

Hughes Information Technology Corporation
Upper Marlboro, MD

305-CD-045-001

EOSDIS Core System Project

Flight Operations Segment (FOS)
Command Design Specification

for the ECS Project

October 1995

305-CD-045-001

Hughes Information Technology Corporation

Upper Marlboro, Maryland

Flight Operations Segment (FOS)
Command Design Specification

for the ECS Project

October 1995

Prepared Under Contract NAS5-60000
CDRL Item #046

APPROVED BY

Cal Moore /s/ 9/22/95
Cal Moore, FOS CCB Chairman Date
EOSDIS Core System Project

305-CD-045-001

This page intentionally left blank.

iv 305-CD-045-001

Preface

This document, one of nineteen, comprises the detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1
launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project
include:

305-CD-040 FOS Design Specification (Segment Level Design)

305-CD-041 Planning and Scheduling Design Specification

305-CD-042 Command Management Design Specification

305-CD-043 Resource Management Design Specification

305-CD-044 Telemetry Design Specification

305-CD-045 Command Design Specification

305-CD-046 Real-Time Contact Management Design Specification

305-CD-047 Analysis Design Specification

305-CD-048 User Interface Design Specification

305-CD-049 Data Management Design Specification

305-CD-050 Planning and Scheduling Program Design Language (PDL)

305-CD-051 Command Management PDL

305-CD-052 Resource Management PDL

305-CD-053 Telemetry PDL

305-CD-054 Real-Time Contact Management PDL

305-CD-055 Analysis PDL

305-CD-056 User Interface PDL

305-CD-057 Data Management PDL

305-CD-058 Command PDL

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (EDHS) at
URL http://edhs1.gsfc.nasa.gov.

v 305-CD-045-001

This document is a contract deliverable with an approval code 2. As such, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class I and Class II change control requirements described in the EOS
Configuration Management Plan, and changes to this document shall be made by document change
notice (DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Drive
Upper Marlboro, Maryland 20774-5372

vi 305-CD-045-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also allocates the level 4 FOS requirements to the subsystem
design.

Keywords: FOS, design, specification, analysis, IST, EOC

vii 305-CD-045-001

This page intentionally left blank.

viii 305-CD-045-001

Change Information Page

List of Effective Pages

Page Number Issue

Title Original

iii through xii Original

1-1 and 1-2 Original

2-1 through 2-4 Original

3-1 through 3-198 Original

AB-1 through AB-8 Original

GL-1 through GL-8 Original

Document History

Document
Number

Status/Issue Publication Date CCR Number

305-CD-045-001 Original October 1995 95-0653

ix 305-CD-045-001

This page intentionally left blank.

x 305-CD-045-001

Contents

Preface

Abstract

1. Introduction

1.1 Identification ... 1-1
1.2 Scope ... 1-1
1.3 Purpose .. 1-1
1.4 Status and Schedule .. 1-1
1.5 Document Organization .. 1-1

2. Related Documentation

2.1 Parent Document ... 2-1
2.2 Applicable Documents .. 2-1
2.3 Information Documents .. 2-2

2.3.1 Information Document Referenced ... 2-2

3. Command Subsystem

3.1 Command Context Description ... 3-1
3.2 FormatCommand Description ... 3-3

3.2.1 FormatCommand Context Description ... 3-3
3.2.2 FormatCommand Interfaces .. 3-6
3.2.3 FormatCommand Object Model Description ... 3-10
3.2.4 FormatCommand Subsystem Dynamic Model .. 3-14
3.2.5 FormatCommand Data Dictionary ... 3-88

3.3 FopCommand Description ...3-107
3.3.1 FopCommand Context Description ...3-107
3.3.2 FopCommand Interfaces ..3-109
3.3.3 FopCommand Object Model Description ..3-110
3.3.4 FopCommand Dynamic Model Description ..3-116
 3.3.5 FopCommand Data Dictionary ..3-147

xi 305-CD-045-001

3.4 TransmitCommand Description ...3-170
3.4.1 TransmitCommand Context Description ...3-170
3.4.2 TransmitCommand Interfaces ..3-172
3.4.3 TransmitCommand Object Model Description ..3-174
3.4.4 TransmitCommand Dynamic Model Description .. 3-178
3.4.5 TransmitCommand Data Dictionary ..3-186

Figures

3.1-1. Command Subsystem Context Diagram .. 3-2
3.2.1-1. FormatCommand Context Diagram ... 3-5
3.2.3-1. FormatCommand Object Diagram .. 3-12
3.2.3-2. FormatCommand Message Object Diagram .. 3-13
3.2.4.1-1. FormatCommand Initialization: Successful for Primary Process 3-17
3.2.4.2-1. FormatCommand Initialization: Successful for Back Up Process 3-20
3.2.4.3-1. FormatCommand Change Authorized User: Successful 3-22
3.2.4.4-1. Real-Time Command Validation: Successful Event Trace 3-26
3.2.4.5-1. Real Time Command Validation: No command definition 3-28
3.2.4.6-1. Real Time Command Validation: Fail Submnemonic check 3-31
3.2.4.7-1. Real Time Command Validation: No Prerequisite override 3-34
3.2.4.8-1. Real Time Command Validation: Cancel critical ... 3-37
3.2.4.9-1. Stored Command Validation: Verification required ... 3-40
3.2.4.10-1. Stored Command Validation: No Verification required 3-42
3.2.4.11-1. Write Configuration Snapshot request .. 3-44
3.2.4.12-1. Read Configuration Snapshot request ... 3-46
3.2.4.13-1. Load Command Validation: Successful Event Trace ... 3-49
3.2.4.14-1. Load Command Validation: Unsuccessful due to missing load 3-51
3.2.4.15-1. Load Command Validation: Unsuccessful due to Invalid Parameters 3-54
3.2.4.16-1. Load Command Validation: Unsuccessful due to canceling out-of-ordered

partition ... 3-57
3.2.4.17-1. Load Command Validation: Unsuccessful due to no prerequisite

override ... 3-60
3.2.4.18-1. Load Command Validation: Unsuccessful due to canceling critical 3-63
3.2.4.19-1. Load Command: Abort Load .. 3-66
3.2.4.20-1. Real-Time Command Verification: Successful Event Trace 3-69
3.2.4.21-1. Real-Time Command Verification: Fail due to time out 3-71
3.2.4.22-1. Real-Time Load Verification: Successful Event Trace 3-74
3.2.4.23-1. Real-Time Load Verification: Failure due to time out .. 3-76
3.2.4.24-1. Real Time Dump ... 3-78
3.2.4.25-1. Hex Command Validation: Success Event Trace ... 3-80

xii 305-CD-045-001

3.2.4.26-1. Hex Command Validation: Failure Event Trace ... 3-82
3.2.4.27-1. FcCdCmdController state diagram .. 3-84
3.2.4.28-1. FcCdRtCmd state diagram ... 3-86
3.2.4.29-1. FcCdLoadCmd state diagram .. 3-87
3.3.1-1. FopCommand Context Diagram .. 3-108
3.3.3-1. FopCommand Object Diagram .. 3-113
3.3.3-2. FopCommand Request Message Object Diagram ... 3-114
3.3.3-3. FopCommand TcFrame Object Diagram .. 3-115
3.3.4.1-1. FopCommand Initialization: Successful .. 3-118
3.3.4.2-1. FopCommand Initialization: Failure Scenario ... 3-120
3.3.4.3-1. FopCommand Init. AD Service w/out CLCW: Successful 3-122
3.3.4.4-1. FopCommand Init. AD Service w/out CLCW: Failure scenario 3-124
3.3.4.5-1. FopCommand Init. AD Service with CLCW: Successful 3-126
3.3.4.6-1. FopCommand Init. AD Service with CLCW: Failure scenario 3-129
3.3.4.7-1. FopCommand Init. AD Service with set VR: Successful scenario 3-132
3.3.4.8-1. FopCommand Init. AD Service with set VR: Failure scenario 3-135
3.3.4.9-1. FopCommand Transmission scenario .. 3-138
3.3.4.9-2. FopCommand: Building Transfer Frame ... 3-139
3.3.4.10-1. FopCommand Retransmission scenario ... 3-142
3.3.4.11-1. FcCmCcsdsFop state diagram .. 3-146
3.4.1-1. TransmitCommand Context Diagram .. 3-171
3.4.3-1. TransmitCommand Object Diagram .. 3-175
3.4.3-2. RMS / TransmitCommand I/F Object Diagram ... 3-176
3.4.3-3. FopCommand / TransmitCommand I/F Object Diagram 3-177
3.4.4.1-1. Real Time Command Transmission ... 3-180
3.4.4.2-1. Real Time Load Command Transmission ... 3-183
3.4.4.3-1. FcCmTransmitController state diagram ..3-185

Tables

3.2.2. FormatCommand Interfaces ...3-6
3.3.2. FopCommand Interfaces ..3-109
3.4.2. TransmitCommand Interfaces ..3-172

Abbreviations and Acronyms

Glossary

xiii 305-CD-045-001

This page intentionally left blank.

1-14 305-CD-045-001

1. Introduction

1.1 Identification
The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL Item 046
305/DV2 under Contract NAS5-60000.

1.2 Scope
The Flight Operations Segment (FOS) Design Specification defines the detailed design of the FOS.
It allocates the Level 4 FOS requirements to the subsystem design. It also defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 046, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated
December 6, 1994.

1.3 Purpose
The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule
This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. This document is under the ECS Project configuration
control.

1.5 Document Organization
305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS

analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.

305-CD-042 contains the detailed design for Command Management Design Specification.

305-CD-043 contains the detailed design for Resource Management Design Specification.

305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Real-Time Contact Management Design
Specification.

305-CD-047 contains the detailed design for Analysis Design Specification.

1-15 305-CD-045-001

305-CD-048 contains the detailed design for User Interface Design Specification.

305-CD-049 contains the detailed design for Data Management Design Specification.

305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

2-16 305-CD-045-001

2. Related Documentation

2.1 Parent Document
The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 1: General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 2: Mission Specific

2.2 Applicable Documents
The following documents are referenced within this FOS Design Specification or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDIS Core System (ECS)
and ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS)
and the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System
(EOS) AM-1 Project Data Base, Preliminary

209-CD-025-001 ICD Between ECS and AM1 Project Spacecraft Software
Development and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schema for the ECS Project

502-ICD-JPL/GSFC Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Jet Propulsion Laboratory and the Goddard
Space Flight Center for GSFC Missions Using the Deep Space
Network

530-ICD-NCCDS/MOC Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Goddard Space Flight Center Mission
Operations Centers and the Network Control Center Data System

2-17 305-CD-045-001

530-ICD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

530-DFCD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Data Format control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

540-041 Interface Control Document (ICD) Between the Earth Observing
System (EOS) Communications (Ecom) and the EOS Operations
Center (EOC), Review

560-EDOS-0230.0001 Goddard Space Flight Center/MO&DSD, Earth Observing System
(EOS) Data and Operations System (EDOS) Data Format
Requirements Document (DFRD)

ICD-106 Martin Marietta Corporation, Interface Control Document (ICD)
Data Format Control Book for EOS-AM Spacecraft

none Goddard Space Flight Center, Earth Observing System (EOS) AM-1
Flight Dynamics Facility (FDF) / EOS Operations Center (EOC)
Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced

The following documents are referenced herein and, amplify or clarify the information presented
in this document. These documents are not binding on the content of this FOS Design
Specification.

194-201-SE1-001 Systems Engineering Plan for the ECS Project

194-202-SE1-001 Standards and Procedures for the ECS Project

193-208-SE1-001 Methodology for Definition of External Interfaces for the ECS Project

308-CD-001-004 Software Development Plan for the ECS Project

194-501-PA1-001 Performance Assurance Implementation Plan for the ECS Project

194-502-PA1-001 Contractor's Practices & Procedures Referenced in the PAIP for the ECS
Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/95

604-CD-002-001 Operations Concept for the ECS project: Part 2B -- ECS Release B,
Annotated Outline, 3/95

604-CD-003-001 ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final, 7/95

194-WP-912-001 EOC/ICC Trade Study Report for the ECS Project, Working Paper

194-WP-913-003 User Environment Definition for the ECS Project, Working Paper

2-18 305-CD-045-001

194-WP-920-001 An Evaluation of OASIS-CC for Use in the FOS, Working Paper

194-TP-285-001 ECS Glossary of Terms

222-TP-003-006 Release Plan Content Description

none Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document (IRD)
Between the Earth Observing System (EOS) Data and Operations
System (EDOS), and the EOS Ground System (EGS) Elements,
Preliminary

NHB 2410.9A NASA Hand Book: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

2-19 305-CD-045-001

This page intentionally left blank.

 3-20 305-CD-045-001

3. Command Subsystem

The Command Subsystem provides the capability to: build, validate, uplink and verify real-time
commands for the EOS spacecraft and instruments; uplink and verify memory loads for the EOS
spacecraft and instruments; and verify execution of stored commands for the EOS spacecraft and
instruments during a real-time contact.

3.1 Command Context Description
The context diagram in Figure 3.1-1 depicts the data flows between the FOS Command Subsystem
and the internal EOC and external ground system components. Descriptions of data flows are
summarized for each components:

Parameter Server: Decommutated spacecraft and instrument telemetry samples are made
available to the Command Subsystem process in response to queries. The Command
Subsystem uses these samples to verify real-time, load and stored commands.

FOS Telemetry Subsystem: Received Dump notification from Command Subsystem.

FOS Resource Management Subsystem: RMS starts the command tasks running as part
of a logical string and then supplies EOC spacecraft contact and commanding session
configuration information.

FOS Data Management Subsystem: Command database and stored memory load
information may be retrieved from the Data Management Subsystem. Information
pertaining to user authorization, command bit pattern definition, validation, and
verification is stored in the command database. Spacecraft and instrument commands to be
executed autonomously, as well as flight software, may be contained within the stored
memory loads. The Data Management Subsystem receives, stores, and forwards to the
appropriate subsystems and instrument teams, the command event messages (command
uplink status, command verification, command notification and command load status)
generated by the Command Subsystem process. Configuration files, part of the database,
are read from the DMS. Snapshot files are written to and read from the DMS.

 FOS User Interface Subsystem: The User Interface delivers command and load directives
to the Command Subsystem. The source of individual directives may be EOC automated
ground scripts or FOT input that have been parsed by the User Interface prior to delivery
to the Command Subsystem. For each command or load directive, the Command
Subsystem performs an authorization check and validation. For transmission of critical
spacecraft and instrument commands and loads, the Commanding Subsystem prompts FOT
for confirmation via the User Interface, and User Interface delivers FOT's response to the
Command Subsystem. Similarly, a prerequisite override prompt gives the operator the
option to uplink commands that fail prerequisite state checking. The User Interface also
receives and displays command status generated by the Command Subsystem.

EDOS : The Command Subsystem meters out CLTUs to EDOS for uplink to the
spacecraft. The Subsystem also receives CLCWs from EDOS.

 3-21 305-C
D

-045-001

FOS
Telemetry
Subsystem

FOS
Data

Management
Subsystem

FOS
Resource

Management
Subsystem FOS

User
Interface

FOS
Command
Subsystem

Parameter Server

EDOS

This System

Configuration Directives,
Snapshot request

Config Info

Cmd DB,
Loads

Events

Cmd
directives,

Prompt responses

Cmd Status,
Prompts

Cmd status

dump notification

Config Info

Load
Completion

Status,
CLCWs,
CLTUs

Ground
Parameter

Values
Parameter values

status

TLM query

CLCWs CLTUs

Figure 3.1-1. Command Subsystem Context Diagram

 3-22 305-CD-045-001

3.2 FormatCommand Description
The FormatCommand process is responsible for the processing of spacecraft commands from the
user interface, and formatting them into the format recognized onboard the spacecraft: 1553b
format for the AM1 mission. It is also responsible for handling directives from FUI for
configuration changes, and execution verification of commands.

3.2.1 FormatCommand Context Description

The context diagram in Figure 3.2.1-1 depicts the data flows between the FOS Command
Subsystem and the internal EOC and external ground system components. Descriptions of data
flows are summarized for each component:

Parameter Server: Decommutated spacecraft and instrument telemetry samples are made
available to the FormatCommand process in response to queries. The Command Subsystem
uses these samples to verify real-time, load and stored commands.

FOS Telemetry Subsystem: Received Dump notification from FormatCommand.

FOS Resource Management Subsystem: RMS starts the command tasks running as part
of a logical string and then supplies EOC spacecraft contact and commanding session
configuration information. This information includes command database selection, valid
authorized user ID, prerequisite setting, and whether the process is acting as part of the
primary or backup command subsystem, and other configuration changes from FUI which
are routed through RMS.

FOS Data Management Subsystem: Command database and stored memory load
information may be retrieved from the Data Management Subsystem. Information
pertaining to user authorization, command bit pattern definition, validation, and
verification is stored in the command database. Spacecraft and instrument commands to be
executed autonomously, as well as flight software, may be contained within the stored
memory loads. The Data Management Subsystem receives, stores, and forwards to the
appropriate subsystems and instrument teams, the command event messages (command
uplink status, command verification, command notification and command load status)
generated by the FormatCommand process. Configuration files, part of the database, are
read from the DMS. Snapshot files are written to and read from the DMS The
configuration file information includes the max downlink time and the setting of the
prerequisite checking (i.e., enabled or disabled). FormatCommand also uses DMS to
access Load Catalog Entry. Once a load, or a 4k load partition, is confirmed as uplinked,
CMS is notified so that it can track the progress of loads.

FOS User Interface Subsystem: The User Interface delivers command and load directives
to the FormatCommand process. The source of individual directives may be EOC
automated ground scripts or FOT input that have been parsed by the User Interface prior to
delivery to the FormatCommand process. For each command or load directive, the
Command Subsystem performs an authorization check and validation. For transmission of
critical spacecraft and instrument commands and loads, the Commanding Subsystem
prompts FOT for confirmation via the User Interface, and User Interface delivers FOT's
response to the Command Subsystem. Similarly, a prerequisite override prompt gives the
operator the option to uplink commands that fail prerequisite state checking. The User

 3-23 305-CD-045-001

Interface also receives and displays command status generated by the Command
Subsystem.

FopCommand process: The command, in its 1553-B format, or the packet in CCSDS
format, is forwarded to the FopCommand process, where the command or load packet is
further prepared for uplinking. Command receipts, which confirm the final uplink status
of commands and loads, are received from the FopCommand process.

 3-24 305-C
D

-045-001

FOS
Telemetry
Subsystem

FOS
Data

Management
Subsystem

FOS
Resource

Management
Subsystem FOS

User
Interface

FormatCommand

FopCommand

Parameter Server

This System

Cmd
Receipts

Formatted
Commands,

Memory
Loads

Configuration Directives,
Snapshot request

Config Info

Cmd DB,
Loads

Events

Cmd
directives,

Prompt responses

Cmd Status,
Prompts

Cmd status

dump notification

Config Info

Load
Completion

Status

Ground
Parameter

Values
Parameter values

status

TLM query

 Figure 3.2.1-1. FormatCommand Context Diagram

 3-25 305-CD-045-001

3.2.2 FormatCommand Interfaces

Table 3.2.2. FormatCommand Interfaces (1 of 4)

Interface
Service

Interface
Class

Interface Class
Description

Service
Provider

Service
User

Frequency

Forwards
commands

FcCm
CCSDSFop
Proxy

Forwards Cmds to
FopCommand
process

CMD:
Fop
Command

CMD:
Format
Command

once per
command

FcGnFop
CmdMsg

Message containing
a r/t command, in
1553-b format

FcGnFop
PacketMsg

Message containing
a CCSDS packet

Passing acks
and status for
commands

FcCdFop
Format
Proxy

Receives acknow-
ledgments & uplink
receipts from the
FopCommand
process

CMD:
Format
Command

CMD:
Fop
Command

two
messages
per
command

FcGnFop
AcceptMsg

Acknowledgement
message

FcGnFop
Receipt
Msg

Message confirming
onboard receipt of a
command

Provide
Configur-
ation Info

FoCdRms
CmdProxy

Sends configuration
directives from RMS
to FormatCommand
process

CMD:
Format
Command

RMS:
String
Manager

< 10 per
pass, or
< 280 / day

FoGnRms
SetPrereq
CheckMsg

Message to change
prereq check
override setting

FoGnRms
Shutdown
Msg

Message notifying
FormatCommand
process to terminate

FoGnRms
Save
Snapshot
Msg

Message requesting
Format Command to
create a snapshot file

FoGnRms
SetCmd
AuthUser
Msg

Message requesting
cmd authorization be
set to specified user/
workstation

 3-26 305-CD-045-001

Interface
Service

Interface
Class

Interface Class
Description

Service
Provider

Service
User

Frequency

FoGnRms
Fromat
Primary
Mode

Message to change
the setting of primary
mode

FoGnRms
Format
InitMsg

Message containing
initialization values

Returns
directive
Status

FoGnCmd
RmsIf

Returns a completion
status of directives to
RMS

CMD:
Format
Command

RMS:
String
Manager

< 10 per
pass, or
< 280 / day

FoGnRms
ReceiptMsg

Directive completion
message

FoGnRms
SetCmd
AuthUser
Msg

Message requesting
cmd authorization be
set to specified user/
workstation

FoGnRms
Fromat
Primary
Mode

Message to change
the setting of primary
mode

FoGnRms
Format
InitMsg

Message containing
initialization values

Returns
directive
Status

FoGnCmd
RmsIf

Returns a completion
status of directives to
RMS

CMD:
Format
Command

RMS:
String
Manager

< 10 per
pass, or
< 280 / day

FoGnRms
ReceiptMsg

Directive completion
message

Provide
commands &
prompt
responses

FoGnFui
CmdProxy

Sends r/t & stored
commands, and
prompt responses
from FUI to
FormatComand
process

CMD:
Format
Command

FUI:
Ground
Script
Controller

1-3 per
command

FoGnFuiRt
CmdMsg

Message containing
a real time command

FoGnFui
StoredCmd
Msg

Message containing
a stored command

Table 3.2.2. FormatCommand Interfaces (2 of 4)

 3-27 305-CD-045-001

Interface
Service

Interface
Class

Interface Class
Description

Service
Provider

Service
User

Frequency

FoGnPart
RspMsg

Message containing
user response to a
partitioned load error
override prompt

FoGnFui
Critical
RspMsg

Message containing
user response to a
critical prompt

FoGnFui
Prereq
RspMsg

Message containing
user response to a
prerequisite override
prompt

FoGnFui
LoadMsg

Message instructing
Format Command to
begin processing a
load

GoGnFui
AbortLoad
Msg

Message instructing
Format
Command is to
interrupt the load in
progress

Provide
command
status info

FoGnCmd
FuiIf

Sends command
status messages to
FUI

CMD:
Format
Command

FUI:
Ground
Script
Controller

1-5 per
command

FoUi
Instruction

Message containing
the command status

Interface to
TLM
subsystem

FoGnCmd
TlmProxy

Sends messages to
the TLM subsystem

CMD:
Format
Command

TLM:
Decom

< 1 / day

FoGnTlm
DumpMsg

Msg notifying TLM
subsystem that a
dump command has
been issued

Provides
access to
data values

Parameter
Server
Interface

Sends ground
parameters and
receives TLM
parameters

Parameter
Server

CMD:
Format
Command

nominally
< 12 per
command

Table 3.2.2. FormatCommand Interfaces (3 of 4)

 3-28 305-CD-045-001

Interface
Service

Interface
Class

Interface Class
Description

Service
Provider

Service
User

Frequency

ClientPid
List

List of parameters for
which data is to be
received

ClientBuffer Data buffer
containing S/C
parameter values

Parameter Contains Format
Command Config
values

FoUi
Instruction

Message containing
the command status

Interface to
TLM
subsystem

FoGnCmd
TlmProxy

Sends messages to
the TLM subsystem

CMD:
Format
Command

TLM:
Decom

< 1 / day

FoGnTlm
DumpMsg

Msg notifying TLM
subsystem that a
dump command has
been issued

Provides
access to
data values

Parameter
Server
Interface

Sends ground
parameters and
receives TLM
parameters

Parameter
Server

CMD:
Format
Command

nominally
< 12 per
command

ClientPid
List

List of parameters for
which data is to be
received

ClientBuffer Data buffer
containing S/C
parameter values

Parameter Contains Format
Command Config
values

Event
Logging

FdEvEvent
Logger

Provides routing and
archiving of events
messages

DMS:
FdEvEvent
Archiver

CMD:
Format
Command

1-5 per
command

Table 3.2.2. FormatCommand Interfaces (4 of 4)

 3-29 305-CD-045-001

3.2.3 FormatCommand Object Model Description

The design scope for the FormatCommand process Object Model (Figure 3.2.3-1) is the
commanding of a single EOS spacecraft and its instruments via a single logical string.

The FcCdCmdController class controls the flow of operations to process commands into the
1553-B spacecraft format. It is responsible for initialization of the FormatCommand process and
is the entry point for command and load directives. Command directives are received via the
FcCdReceiveIf class from the User Interface Subsystem for processing by the
FcCdCmdController. The FcCdCmdController's role is to coordinate validation, build,
transmission, receipt verification and execution verification for real-time commands and loads and
to coordinate execution verification alone for stored commands. For real-time commands, it is
responsible for validating the command submitted in the command directive utilizing the
command database; initializing the command's verification modes; and initiating building of the
command. ASTER command status will be exported to the ASTER control center via the
FdEvEventLogger class in addition to the EOC via the User Interface Subsystem. Note that
commands processed by FcCdCmdController may be in various formats; e.g., 1553-B (AM-1
real-time) and CCSDS packets (load data). For stored commands (commands that have previously
been loaded and are currently executing onboard the spacecraft), real-time commands (which are
executed upon receipt onboard the spacecraft), and loads, it retrieves the telemetry verification
point information from the command database, creates the FcCdCmd objects with the verification
point information embedded within them, and then initiates the verification process. Upon
execution verification, the (stored or real-time) command verification status is recorded for each
command directive and displayed by User Interface.

The FcCdCmdQueue is used to keep a record of commands while they are waiting for receipt
verification and telemetry verification. It contains two data structures: a linked list of commands
which can be quickly referenced by their sequence number, and a hash table of parameters, each
of which has its own linked list of commands which verify using that parameter. Thus, when an
updated parameter value comes in, all the commands which verify using that parameter are readily
accessed. The queue itself has operations to add and remove commands, to begin tlm updates for
a command, to verify commands, and to identify time-out commands.

The FoGnRmsCmdProxy is used by RMS to configure FormatCommand

The FoGnFuiCmdProxy is used by FUI to send commands, loads, prompt responses, and load
aborts to FormatCommand.

The FoGnCmdFuiIf is used to send command status messages to FUI.

The FoGnFormatTlmIf is used to send messages to TLM.

The FoGnCmdTlmProxy is used to send parameter service requests to TLM Parameter Server.

The FcCdFopFormatProxy is used by FopCommand process to send accept and receipt status (for
a real time command or a memory load packet) to FormatCommand.

The FoPsClientIF is a proxy for parameter server. It is used by FormatCommand to serve
parameters.

The FoGnGenericMessage class (Figure 3.2.3-2) is a base class that represents all messages
received by FormatCommand, and some messages sent by FormatCommand. These messages are
not listed individually in this description. They can be found in a separate object model and in the

 3-30 305-CD-045-001

interface table.

The FoUiStatus class is sent to FUI to inform it of command status.

The FcCdCommandDatabase class is a container class that contains instances of the FcCdCmdDef
class for a single spacecraft and its instruments. The FcCdCmdDef class contains a single
command definition. The FcCdCommandDatabase is initialized from the Data Management
Subsystem via the FoDsFile class. Command definitions are templates for spacecraft and
instrument commands and are used in the validation of command directives.

The FcCdBaseCmd class is the base class for all command classes. It contains addresses of proxies
and interfaces used by all command classes.

The FcCdHexCmd class contains the hex/binary command in 1553-B format.

The FcCdCmd class specifies the common attributes and operations for command classes within
the Command Subsystem. FcCdCmd is further specified as three subclasses, FcCdRtCmd,
FcCdStoredCmd and FcCdLoadCmd.

The FcCdStoredCmd is used for telemetry verified of stored command. It contains the maximum
down link time to accommodate for the delay.

The FcCdRtCmd class is responsible for building the binary bit pattern for uplink to the spacecraft.
The FcCdRtCmd class does prerequisite checking and execution verification of commands
uplinked to the spacecraft by accessing telemetry values via the FoGnCmdTlmProxy. A subclass
of the FcCdRtCmd class is the FcCdLoadCmd class. The FcCdLoadCmd class handles spacecraft
and instrument memory loads.

The FcCdLoadCmd coordinates load processing by accessing and forwarding load data in the
FcCdLoadData object, in CCSDS packet format, from FcCdLoadCmd to FcCdCmdController.
The FcCdLoadCmd class verifies loads uplinked to the spacecraft by accessing telemetry values
via the FoGnCmdTlmProxy class.

The FcCdLoadData class holds the data for a load.

The single instantiation of the FcCdCmdQueue class holds the commands and loads waiting for
telemetry verification. It stores them in two member object data structures, a linked list of
commands and loads, with the verification parameter of each; and a hash table which uses the
telemetry parameters as keys, with pointers to all the commands verifying off of each parameter.

 3-31 305-C
D

-045-001

FcCdCmdDef

FcCdCmd

FcCdRtCmd

FoGnFormatRmsIf

Note: ALL objects may generate events.
These events will be logged in FDM

and displayed through FUI.
Events from the backup process will

be supressed

FcCdCmdController

FoGnCmdFuiIf

FcCdCommandDatabase

FcCdCmdQueue

FoDsFile

myName

Close()
Open()
Read()
Write()

myHashTable

Init(FoDsFile, DatabaseId)
restoreGuts(RWvistream& strm)
GetCmdDefinition(command_struct* cmd_str)

FdEvEventLogger

GenEvent()

myCmdLen
myCmdType
myCritical
myDescriptor
myDestination
myExpectedTlmValue
myFixedDataRec
myMnemonic
myNumFixedDataRec
myNumPrereq
myNumVarDataRec
myPrereqRec
mySubSystem
myTlmVerifyPid
myVarDataRec
myVerifyWaitInterval

FcCdCmdDef(command_struct* cmd_str)
~FcCdCmdDef()
GetCmRecord(command_struct* cmd_str)
hash()
isEqual(const RWCollectable* cmd)
restoreGuts(RWvistream& strm)

FoGnFuiCmdProxy

Note: Proxy resides
in FUI software

FoCmCCSDSFopProxy

FoGnRmsFormatProxy

FoCdReceiveIf

Init()
Critical(EcTInt)
Error(EcTInt)
PrereqPass(EcTInt)
PrereqFail(EcTInt)
ReceiptVerifyPass(EcTInt)
ReceiptVerifyFail(EcTInt)
TlmVerifyPass(EcTInt)
TlmVerifyFail(EcTInt)
TlmVerifyNone(EcTInt)
GoAhead(EcTInt)

Load(EcTInt, loadname, EcTInt)
AbortLoad(EcTInt)
SendRtCmd(FoUiInstruction)
SendStoredCmd(FoUiInstruction)
SendCriticalResponse(EcTInt, FcTCdCriticalRsp)
SendPrereqOverride(EcTInt, FcTCdPrereqRsp)

FcCdLoadCmd

myParamList
myParamListIt
myCmdListIt
myCmdList

Init()
Add(FcCdCmd)
BeginTlm(EcTInt)
Verify()
CheckTimes()

SetPrereqCheckState(FcTCdPrereqCheckState)
SetCmdAuthUser(EcTInt, EcTInt)
ConfigSnapshotRequest(RWCString)
ReadConfigSnapshot(RWCString)
Shutdown()

ProcessPacket(EcTUChar*, EcTInt)
ProcessCmd(FcCdCmd)

FcCdLoadData

FcCdBaseCmd

FcCdHexCmd

FcCdStoredCmd

myFuiCId
myFuiCmdType
myEventLogger
myDsFile
myFopProxy
myTlmProxy
myFuiProxy

FcCdBaseCmd()
~FcCdBaseCmd()
CheckCritical(): virtual EcTBoolean
ProcessCriticalRsp(FoGnFuiCriticalRspMsg* msg)
Validate():virtual EcTInt
VerifyTlm(Struct_Pid* TlmMsg)

myBinaryCmd

FcCdHexCmd()
~FcCdHexCmd()
ProcessCriticalRsp(FoGnFuiCriticalRspMsg* FuiRspMsg)
SendCmd()

myDownLinkDelay

FcCdStoredCmd()
~FcCdStoredCmd()
TimeOut()

FoGnFormatTlmIf

Init()
PrepareForDump(FcCdCmd*)

FoLdCatalogEntry

myCRC
myCriticalFlag
myDASId
myDestination
myEndLocation
myLoadName
myLoadSize
myLoadType
myNumPackets
myNumTimesSchd
myNumberUplinkLoads
myOwner
myRTSBufferNumber
mySpacecraftLocation
myStartLocation
myStorageLocation
myUplinkLoads
myUplinkTime
myValidUplinkPeriod

GetDASId()
GetLoadName()
GetLoadSize()
GetLoadType()
GetNumTimesSchd()
GetNumberUplinkLoads()
GetOwner()
GetSpacecraftLocation()
GetUplinkLoads()
GetUplinkTime()
GetValidUplinkPeriod()
SetDASId(EcTInt)
SetLoadName(const RWCString&)
SetLoadSize(EcTInt)
SetLoadType(const RWCString&)
SetNumTimesSchd(const EcTInt)
SetNumberUplinkLoads()
SetOwner(const RWCString&)
SetSpacecraftLocation(const RWCString&)
SetUplinkLoads(const RWSlistCollectables&)
SetUplinkTime(const RWTime&)
SetValidUplinkPeriod(const FOSTimeInterval&)

FcCdFopFormatProxy

Accept(EcTInt SeqNo)
ReceiptStatus(EcTInt, EcTBoolean) EcTVoid

Note: Proxy resides
in FopCommand process

FoPsClientIF

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)
UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

myBinaryCmd
myPrerequisiteStatus
myCmdDirective

FcCdRtCmd(command_struct* cmd_str)
~FcCdRtCmd()
Build()
CheckPrereq()
ProcessCriticalRsp(FoGnFuiCriticalRspMsg* FuiMsg)
ProcessPrereqRsp(FoGnFuiPrereqRspMsg* FuiMsg)
SendCmd()
TimeOut()
Validate(PrereqFlag, FuiCmdStatus)
CheckCritcal(FoUiInstruction* FuiMsg): EcTBoolean

myFuiCid
myFuiCmdType
myDestination
myCRC
myTlmPid
myPrereqRec
myUpLinkTime
myWaitInterval
myLoadDataIndex
myDsFile
myEventLogger
myFopProxy
myFuiProxy
myCmsProxy
myCritical
myData
myLoadId
myPartition
myTotalPacket
myCurrentPacket
mySpacecraftId
myWindow

FcCdLoadData(myLoadId, myDsFile, myEventLogger,myFopProxy,myFuiProxy)
~FcCdLoadData()
Init()
SendPacket()

GetLoadParameters(RWCString* CRC, EcTBoolean* Critical, EcTInt* TlmPid,Wait,
Time,Prereq)

ValidateLoadParameters(RWCString* SpacecraftId)

myCRC
mySpacecraftId
myLoadData
myUpLinkTime
myPartition
myLoadId

FcCdLoadCmd(RWCString* spacecraftId, RWCString* LoadId)
~FcCdLoadCmd()
Validate(FoUiInstruction* FuiMsg)
CheckUplinkTime()
SendLoad()
VerifyTlm(Struct_Pid* TlmMsg)
ProcessPartitionRsp(FuiMsg)
ProcessCriticalRsp(FoGnFuiCriticalRspMsg* FuiMsg)

PutMessage(RWCString)
SendReceipt(EcTBoolean)

myFuiCmd
myLoadFlag
myTimeoutCheckInterval
myFopProxy
myScId
myState
myStatus
myPrereqCheckState
myMessage
myUserId
myWksId
myDbId
myCmdQueue
myEventLog
myFile
myCmdDb
myFuiProxy
myTlmProxy
myFuiIf
myRmsIf
myDmsIf

Init()
Run()
Shutdown()
ProcessRtCommand(RWCString, EcTInt, EcTInt, EcTInt)
ProcessStoredCommand(RWCString, EcTInt, EcTInt, EcTInt)
ProcessCriticalRsp(EcTInt, FcTCdCritcalRsp)
ProcessPrereqRsp(EcTInt, FcTCdPrereqRsp)
ProcessLoadRequest(RWFile)
ProcessLoadAbort(RWFile)
ProcessTlmParamUpdateMsg(RWSlistCollectables*)
ProcessFopAcceptMsg(EcTInt)
ProcessFopReceiptMsg(EcTInt)
ReadSnapshot(RWFile)
SaveSnapshot(RWFile)
SetPrereqCheckState(FcTCdPrereqCheckState)
SetState(FcTCdStatus)
UpdateCmdAuthUser(EcTInt, EcTInt)
CheckCmdAuthUser()

myCmdLen
myCmdType
myCritical
myDescriptor
myDestination
myEnqueueTime
myExpectedTlmValue
myFixedDataRec
myMnemonic
myNumFixedDataRec
myNumPrereq
myNumVarDataRec
myPrereqRec
mySubSystem
myTlmVerifyPid
myVarDataRec
myVerifyWaitInterval

FcCdCmd(command_struct* cmd_str)
~FcCdCmd()
TimeOut()
VerifyTlm(Struct_Pid* TlmPid)
RecordTime()

FoGnTlmDumpProxy

IfAbsolute()
GetTableId()
GetSegOffset()
GetWordLength()
GetAddress()
GetMsg()
Init()

{shared - FDM with all S/S}

 - : RWSet

 + : EcTBoolean
 + : EcTVoid
 + : EcTInt

 - : EcTInt
 - : enumerated
 - : EcTBoolean
 - : struct
 - : struct
 - : set
 - : array of struct
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : array of struct
 - : enumerated
 - : set
 - : array of struct
 - : EcTReal

 +
 +
 + : EcTVoid
 + : EcTInt
 + : RWBoolean
 + : EcTVoid

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt

 - : RWSListCollectables
 - : RWSListCollectablesIterator
 - : RWSListCollectablesIterator
 - : RWSListCollectables

 +
 + : EcTInt
 + : EcTInt
 + : EcTVoid
 + : EcTVoid

 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean

 - : EcTInt
 - : enum {script,stored, CAC}
 - : static FdEvEventLogger*
 - : static FoDsFile*
 - : static FoGnCmdFopProxy*
 - : static FoGnCmdTlmProxy*
 - : static FoGnCmdFuiProxy*

 +
 +

 + : virtual EcTInt

 + : virtual EcTBoolean

 - : RWCString*

 +
 + : EcTBoolean
 + : EcTBoolean

 - : static time

 +
 +
 + : EcTBoolean

 + : EcTVoid
 + : EcTVoid

{shared - FMN,FUI,FDM,FPS}

 - : EcTULongInt
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt = 1
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : RWSlistCollectables
 - : RWTime = NULL
 - : FOSTimeInterval

 + : EcTInt
 + : RWCString&
 + : EcTInt
 + : RWCString&
 + : EcTInt
 + : EcTInt
 + : RWCString&
 + : RWCString&
 + : RWSlistCollectables
 + : RWTime&
 + : FOSTimeInterval&
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : RWCString
 - : RWHashDictionary

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : structure
 - : EcTBoolean
 - : structure

 +
 +
 + : EcTBoolean
 + : EcTBoolean
 + : EcTInt
 + : EcTInt
 + : EcTBoolean
 + : EcTBoolean
 + : EcTInt

CmdType

CmdType

 - : EcTInt
 - : enum {script, stored, CAC}
 - : RWCString*
 - : RWCString*
 - : EcTInt
 - : struct*
 - : RWTime*
 - : EcTInt
 - : EcTInt
 - : FoDsFile*
 - : FdEvEventLogger*
 - : FoGnCmdFopProxy*
 - : FoGnCmdFuiProxy*
 - : FoLdCatalogEntry*
 - : EcTBoolean
 - : RWCString*
 - : RWCString*
 - : RWCString*
 - : EcTInt
 - : EcTInt = 0
 - : RWCString*
 - : time*

 +
 +
 + : EcTBoolean
 + : EcTInt

 + : EcTVoid

 + : EcTBoolean

 - : RWCString*
 - : RWCString*
 - : FcCdLoadData*
 - : RWTime*
 - : RWCString*
 - : RWCString*

 +
 +
 + : FcTCdStatus
 + : EcTInt
 + : EcTInt
 + : EcTBoolean
 + : EcTInt
 + : EcTBoolean

 + : EcTVoid
 + : EcTVoid

 - : FoUiInstruction
 - : EcTBoolean
 - : EcTReal
 - : FoCmCCSDSFopProxy
 - : EcTInt
 - : enum
 - : enum
 - : boolean
 - : TBD
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : FcCdCmdQueue*
 - : FdEvEventLogger*
 - : FoDsFile*
 - : FcCdCommandDatabase*
 - : FoGnFuiCmdProxy*
 - : FoGnTlmCmdProxy*
 - : FoGnCmdFuiIF*
 - : FoGnCmdRmsIF*
 - : FoGnCmdDmsIF*

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : FcTCdState
 + : EcTVoid
 + : EcTInt

 - : EcTInt
 - : FcTCdCmdType
 - : EcTBoolean
 - : structure
 - : structure
 - : time
 - : set
 - : array of struct
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : array of struct
 - : enumerated
 - : set
 - : array of struct
 - : EcTReal

 +
 +
 + : virtual EcTBoolean
 + : EcTBoolean
 + : EcTVoid

 + : EcTBoolean
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTBoolean
 + : EcTBoolean

Manage
ConfigInfo

provide status

Provides
DBSelection

logs events for

Provides
DB info

initiate
verication

contains

SendsDirectives

SendsCommands

provide status

sends directive
messages to

receives messages from

processes a current command

prompts

provides cmd definition

has

provides load data

sends dump notice for

sends accept and receipt status

serve parameters

sends packet to

creates

is contained by

gets load
parameters from

sends dump
notice to

Figure 3.2.3-1. FormatCommand Object Diagram

 3-32 305-C
D

-045-001

RWCollectable

FoGnGenericMsg

FoGnRmsMsg
FcGnFopMsg

FoUiStatus

FoGnTlmMsg

FoGnRmsFormatShutdownMsg

FoGnRmsSetCmdAuthUserMsg

FoGnRmsSaveFormatSnapshotMsg

FoGnRmsSetPrereqCheckMsg FcGnFopAcceptMsg

FcGnFopReceiptMsg

FcGnFopDataMsg

FoGnTlmDumpMsg

FoGnFuiAbortLoadMsg

FoGnFuiMsg

FoGnFuiLoadMsg

FoGnFuiCriticalRspMsg

FoGnFuiPrereqRspMsg

Execute()

mySeqNum

myAbsoluteFlag
myAddress
myTableId
mySegOffset
myWordLength

FcGnFopCmdMsg

FcGnFopPacketMsg

FoGnRmsFormatPrimaryModeMsg

myResponse

Execute()

Execute()

myPrimaryMode

Execute()
SetPrimaryMode(FcTCdPrimaryMode)
GetPrimaryMode()

myBcFlag

Execute()

myDataLength
myData

mySuccess

Execute()

Execute()
myPrereqCheckState

Execute()

myFileName

Execute()
FoGnRmsSaveSnapshotMsg()
~FoGnRmsSaveSnapshotMsg()

myUserId
myWksId

Execute()

FoGnFuiRtCmdMsg

mySeqNum
myWksId
myUserId

FoGnRmsFormatInitMsg

FoGnFuiPartRspMsg

myResponse

Execute()

mySeqNum
myStatus
myText myResponse

Execute()

Execute()
FoGnRmsShutdownMsg()
~FoGnRmsShutdownMsg()

myString
mySource

Execute()

FoGnFuiStoredCmdMsg

myString
mySource

Execute()

myLoadId
myType

Execute()

myScId
myDbId
myPrimaryMode
myOperationMode
myParamServerAddr
myFuiAddr
myFopAddr
myTlmAddr

Execute()

myLoadId
myLoadStage

Execute()

e

 + : virtual EcTVoid

 - : EcTInt

 - : EcTBoolean
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt

 - : FcTCdRsp

 + : EcTVoid

 + : EcTVoid

 - : FcTCdPrimaryMode

 + : EcTVoid
 + : EcTVoid
 + : FcTCdPrimaryMode

 - : EcTBoolean

 + : EcTVoid

 - : EcTInt
 - : EcTUChar*

 - : EcTBoolean

 + : EcTVoid

 + : EcTVoid
 - : FcTCdPrereqCheckState

 + : EcTVoid

 - : RWCString

 + : EcTVoid
 +
 +

 - : EcTInt
 - : EcTInt

 + : EcTVoid

 - : EcTInt
 - : EcTInt
 - : EcTInt

 - : FcTCdRsp

 + : EcTVoid

 - : EcTInt
 - : FoTUiStatus
 - : RWCString - : FcTCdCriticalRsp

 + : EcTVoid

 + : EcTVoid
 +
 +

 - : RWCString
 - : FcTCdSource

 + : EcTVoid

 - : RWCString
 - : FcTCdSource

 + : EcTVoid

 - : RWCString
 - : FcTCdLoadType

 + : EcTVoid

 - : EcTInt
 - : EcTInt
 - : FcTCdPrimaryMode
 - : FcTCdOperationMode
 - : FoTGnAddress
 - : FoTGnAddress
 - : FoTGnAddress
 - : FoTGnAddress

 + : EcTVoid

 -
 - : FcTCdLoadStage

 + : EcTVoid

Figure 3.2.3-2. FormatCommand Message Object Diagram

 3-33 305-CD-045-001

3.2.4 FormatCommand Subsystem Dynamic Model

The following are the FormatCommand Subsystem scenarios which are defined in this section.

Real-Time Command: Initialization for Primary Process

 Real-Time Command: Initialization for Back Up Process

Real-Time Command: Change User Authorization

Real-Time Command Validation: Successful

Real-Time Command Validation: No Command Definition

Real-Time Command Validation: Fail Submnemonic Check

Real-Time Command Validation: Fail Due to No Override

Real-Time Command Validation: Fail Due to Cancel Critical

Stored Command Validation

Stored Command Validation - No Verification

Write Configuration Snapshot Request

Read Configuration Snapshot Request

Load Command Validation: Successful

Load Command Validation: Fail Due to Missing Load

Load Command Validation: Fail Due to Invalid Parameter

Load Command Validation: Fail Due to Cancel Critical

Load Command Validation: Abort

Hex Command Validation: Success

Hex Command Validation: Fail Due to Cancel Critical

Real-Time Command Verification: Success

Real-Time Command Verification: Failure Due to Timeout

Real-Time Load Verification: Success

Real-Time Load Verification: Failure Due to Timeout

Real-Time Dump Command

 Additionally, state diagrams for the Command Controller (FcCdCmdController), the Real-Time
Command (FcCdRtCmd), and the Load Command (FcCdLoadCmd) objects are included.

 3-34 305-CD-045-001

3.2.4.1 Real-Time Command FormatCommand Initialization: Successful Scenario
for Primary Process

3.2.4.1.1 Real-Time Command FormatCommand Initialization: Successful for Primary Process
Abstract

The purpose of the "Real-Time Command FormatCommand Initialization: Successful for Primary
Process" scenario is to describe the process by which the FormatCommand software of the
FormatCommand process is initialized.

Figure 3.2.4.1-1 is the event trace diagram which corresponds to this scenario.

3.2.4.1.2 Real-Time Command FormatCommand Initialization: Successful Summary Information

Interfaces:

Parameter Server

Data Management Subsystem

Resource Management Subsystem

FormatCommand

FOS User Interface

Stimulus:

The Resource Manager (RMS) starts up the FormatCommand process.

Desired Response:

The Resource Manager receives the status of successful FormatCommand initialization.

Pre-Conditions:

Configuration file must be identified and available.

Post-Conditions:

The FormatCommand is placed in the "wait" state, and ready for directives.

3.2.4.1.3 Scenario Description

The main operation of the FormatCommand application (FcCmFopAppl) is invoked when the
Resource Manager (RMS) starts up the process. The command line will contain the IPC address
of the RMS. This address is forwarded to the FcCdCmdController, the controller of the
FormatCommand processing. The IPC address is used to establish communication with the RMS,
via FoGnFormatRmsIf. Once communication is established, the process waits for an initialization
message from RMS. Upon receipt of the message, the message is read and input parameters are
extracted from the message. These parameters contain IPC addresses which are used to establish
communications with other processes, specifically DMS, TLM, Parameter Server, FOS User
Interface and the FopCommand process. Other parameters include the spacecraft ID, database ID,
and the process "role" as part of a primary string.

A DMS connection is established via FdEvEventLogger for events processing.

FoDsFile is then utilized to access the database file. The file information is used to configure the
FormatCommand attributes and will contain default values for various attributes. This
configuration information is then used to configure the FormatCommand.

 3-35 305-CD-045-001

Then several objects which will exist for the life of the string are instantiated.

A successful completion status is returned to RMS and a "successful initialization" event message
is logged via FdEvEventLogger.

 3-36 305-C
D

-045-001

FcCdCmdController FoGnFormatRmsIf FdEvEventLogger ParameterSever FoCmCCSDSFopProxy FoGnFormatTlmIfFoDsFile FcCdCmdDatabase FcCdCmdQueue EcMpNameServerFoGnRmsFormatProxy FoGnCmdFuiIf FcCdBaseCmd FcCdStoredCmd

initiate connection
(RMS address)

tell RMS we are awake

init message

initiate connection(DMS address)

initiate connection

initiate connection

initiate connection

format configured successfully

configured successfully

config FormatCommand
process

instantiate and initialize

initialize ipc,
get RMS address from

command line

wait for init message

retrieve address for DMS event handler and file service

initiate connection (DMS address)

initiate connection

instantiate and initialize

read database config file

instantiate and initialize

instantiate and initialize

Figure 3.2.4.1-1. FormatCommand Initialization: Successful for Primary Process

 3-37 305-CD-045-001

3.2.4.2 Real-Time Command FormatCommand Initialization: Successful Scenario
for Back Up Process

3.2.4.2.1 Real-Time Command FormatCommand Initialization: Successful for Back Up
Process Abstract

The purpose of the "Real-Time Command FormatCommand Initialization: Successful for Back Up
Process" scenario is to describe the process by which the FormatCommand software of the
FormatCommand process is initialized.

Figure 3.2.4.2-1 is the event trace diagram which corresponds to this scenario.

3.2.4.2.2 Real-Time Command FormatCommand Initialization: Successful Summary Information

Interfaces:

Parameter Server

Data Management Subsystem

Resource Management Subsystem

FormatCommand

FOS User Interface

Stimulus:

The Resource Manager (RMS) starts up the FormatCommand process.

Desired Response:

The Resource Manager receives the status of successful FormatCommand initialization.

Pre-Conditions:

Configuration file must be identified and available.

Post-Conditions:

The FormatCommand is placed in the "wait" state, and ready for directives.

3.2.4.2.3 Scenario Description

The main operation of the FormatCommand application (FcCmFopAppl) is invoked when the
Resource Manager (RMS) starts up the process. The command line will contain the IPC address
of the RMS. This address is forwarded to the FcCdCmdController, the controller of the
FormatCommand processing. The IPC address is used to establish communication with the RMS,
via FoGnFormatRmsIf. Once communication is established, the process waits for an initialization
message from RMS. Upon receipt of the message, the message is read and input parameters are
extracted from the message. These parameters contain IPC addresses which are used to establish
communications with other processes, specifically DMS, TLM, Parameter Server, FOS User
Interface and the FopCommand process. Other parameters include the spacecraft ID, database ID,
and the process "role" as part of a backup string.

A DMS connection is established via FdEvEventLogger for events processing.

FoDsFile is then utilized to access the database file. The file information is used to configure the
FormatCommand attributes and will contain default values for various attributes. This
configuration information is then used to configure the FormatCommand.

 3-38 305-CD-045-001

Because it is a backup process, FcCdCmdController reads the snapshot file and does further
configuration based on the values in it.

Then several objects which will exist for the life of the string are instantiated.

A successful completion status is returned to RMS and a "successful initialization" event message
is logged via FdEvEventLogger.

 3-39 305-C
D

-045-001

FcCdCmdController FoGnFormatRmsIf FdEvEventLogger ParameterSever FoCmCCSDSFopProxy FoGnFormatTlmIfFoDsFile FcCdCmdDatabase FcCdCmdQueue EcMpNameServerFoGnRmsFormatProxy FoGnCmdFuiIf FcCdBaseCmd FcCdStoredCmd

initiate connection
(RMS address)

tell RMS we are awake

init message

initiate connection(DMS address)

initiate connection

initiate connection

initiate connection

format configured successfully

configured successfully

config FormatCommand
process

instantiate and initialize

initialize ipc,
get RMS address from

command line

wait for init message

retrieve address for DMS event handler and file service

initiate connection (DMS address)

initiate connection

instantiate and initialize

read database config file

instantiate and initialize

instantiate and initialize

read snapshot

Figure 3.2.4.2-1. FormatCommand Initialization: Successful for Back Up Process

 3-40 305-CD-045-001

3.2.4.3 Real-Time Command FormatCommand Change Authorized User:
Successful Scenario

3.2.4.3.1 Real-Time Command Format Command Change Authorized User: Successful
Abstract

The purpose of the "Real-Time Command FormatCommand Change Authorized User: Successful"
scenario is to describe the process by which the FormatCommand software of the
FormatCommand process is directed to change its authorized user..

Figure 3.2.4.3-1 is the event trace diagram which corresponds to this scenario.

3.2.4.3.2 Real-Time Command FormatCommand Change Authorized User: Successful Summary
Information

Interfaces:

Resource Management Subsystem

Stimulus:

The Resource Manager (RMS) sends a message directing FormatCommand to change its
authorized user..

Desired Response:

The Resource Manager receives the status of successful execution of the directive.

Pre-Conditions:

Communications established with RMS.

Post-Conditions:

The authorized user has been changed.

3.2.4.3.3 Scenario Description

RMS sends a directive message via the FoGnRmsFormatProxy to the FcCdCmdController, which
changes the authorized user information and has FoGnFormatRmsIf send a receipt message to
RMS indicating success.

 3-41 305-C
D

-045-001

FoGnCmdController
FoGnFormatRmsIfFoGnRmsFormatProxy

sends directive to change authorized user

tells to send receipt

changes values
for authorized user

sends receipt to RMS

Figure 3.2.4.3-1. FormatCommand Change Authorized User: Successful

 3-42 305-CD-045-001

3.2.4.4 Real-Time Command Validation: Successful Scenario

3.2.4.4.1 Real-Time Command Validation: Successful Abstract

The purpose of the "Real-Time Command Validation: Successful" scenario is to describe the
process by which a real-time command is validated and built. The validation check is done before
the command is actually built (translated from a mnemonic to a string of bits).

Figure 3.2.4.4-1 is the event trace diagram which corresponds to this scenario.

3.2.4.4.2 Real-Time Command Validation: Successful Summary Information

Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem

UplinkCommand Process

Stimulus:

A command directive is forwarded by FOS User Interface Subsystem.

Desired Response:

FOS User Interface receives the status of successful command validation/generation.

Pre-Conditions:

Database must be identified and loaded.

Post-Conditions:

The command is assembled into the command protocol format. This format is specified as
1553 bus for AM-1.

3.2.4.4.3 Scenario Description

Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuiIF provides to FcCdCmdController a real-time command, in mnemonic format. The
command in the scenario is a critical command for the ASTER instrument.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded. The query also reveals that: 1) the command is not a load command, and 2) the
command is for the ASTER instrument. FdEvEventLogger echos the command, and it is
eventually forwarded (by DMS) to the ASTER control center (as a notification message).

FcCdCmdController then uses the information from the database query in the creation of an
FcCdRtCmd object. During its creation, the FcCdRtCmd object is imbedded with information

 3-43 305-CD-045-001

supplied by the FcCdCommandDatabase information (such as the binary command, verification
information, prerequisite states, criticality) as well as with information about the user who entered
the command. Thus, the object contains all the information it needs to do validation.

FcCdCmdController then invokes the Validate operation of the FcCdRtCmd, which performs the
following:

It does syntax checking of the command directive as items such as submnemonics (required
and optional; database defined default values are substituted for omitted optional
submnemonics) are validated.

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). The CheckPrereq operation performs this function.
The prerequisite check is positive if the telemetry points are active (recently updated) and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the USER to respond allow or
cancel. As this is an asynchronous communication, FcCdRtCmd returns control to the
FcCdCmdController, which resumes polling for all possible messages.
FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdRtCmd by invoking its ProcessPrereqRsp operation. The user's
response is to allow; the proper notifications are made via FdEvEventLogger and validation
processing continues.

It issues a critical prompt to the USER to respond allow or cancel. As this is an
asynchronous communication, FcCdRtCmd returns control to the FcCdCmdController,
which resumes polling for all possible messages. FcCdCmdController then receives a FUI
message indicating the user's response. It passes this response to FcCdRtCmd by invoking
its ProcessCriticalRsp operation. The user's response is to allow, the proper notifications
are made via FdEvEventLogger and control returns to FcCdCmdController.

The command is now successfully validated and ready to be built.

FcCdCmdController invokes the Build operation of the FcCdRtCmd object, the end result of which
is a command built according to the command protocol: 1553 bus.

The completed command consists of a command destination, a command descriptor and,
optionally, the command data.

The command destination consists of the following:

a database defined Remote Terminal ID, which is supplied to the object upon creation

a database defined Subaddress, also supplied to object upon creation.

a Word Count, which is derived from the length of the command data.

The Command Descriptor consists of the following:

a database defined Command Type, which is supplied to the object upon creation.

a Word count, which is derived from the length of the command data (serial commands
only)

a database defined Board address, which is supplied to the object upon creation.

 3-44 305-CD-045-001

a Channel select, which defines the BDU to be used

a database defined Command Channel, which is supplied to the object upon creation.

The Command data:

The database defines whether or not the data will be present, and if present, the size.

The values of the data (if present) are either:

1) database defined, and supplied to the object upon creation

2) defined by the user, through submnemonic specification

3) have default values which are database defined, and overridable by the user through
submnemonic specification

The command is now successfully generated, and an acknowledgment messages is returned to user
interface. The command is forwarded to the UplinkCommand process via
FcCmCCSDSFop-Proxy, and then added to the queue.

 3-45 305-C
D

-045-001

FoGnCmdFuiProxy
FoGnCmdFuiIF

FcCdCmdController FcCdCommandDatabase FcCdCmdDef FcCdRtCmd FoGnCmdTlMProxy FdEvEventLogger
FoCmCCSDSFopProxy

FcCdCmdQueue

provides Directives

Echo command & Notify ASTER

Check
User

Authorization

Request Cmd Def

Request DB info

Provides DB info

Provides Cmd Def

Check
submnemonic

access prerequisite

check tlm

Prompts for override

returns prompt_for_override status

receive telemetry

init & validate

submnemonic check successful

send ALLOW resp.
provide prerequisite response

Process
Prereq. resp.

check critical

prereq. check successful

prompts for critical command permission

returns prompt_for_permission status

send ALLOW resp.

provide critical response

process
critical response

build cmd

provide successful status

ack done

provides command to

build

validation successful

return success status

critical check successful

log prereq check override

add to queue

done

Figure 3.2.4.4-1. Real-Time Command Validation: Successful Event Trace

 3-46 305-CD-045-001

3.2.4.5 Real-Time Command Validation: No Command Definition Scenario

3.2.4.5.1 Real-Time Command Validation: No Command Definition Abstract

The purpose of the "Real-Time Command Validation: No Command Definition" scenario is to
describe the process by which a request to issue an erroneous command is rejected.

Figure 3.2.4.5-1 is the event trace diagram which corresponds to this scenario.

3.2.4.5.2 Real-Time Command Validation: No Command Definition Summary Information

Interfaces:

FOS User Interface

Data Management Subsystem

Stimulus:

A erroneous command directive is forwarded by FOS User Interface Subsystem.

Desired Response:

FOS User Interface receives the status of the failed command.

Pre-Conditions:

Database must be identified and loaded.

Post-Conditions:

None.

3.2.4.5.3 Scenario Description

Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuiIF provides to FcCdCmdController a real-time command in mnemonic format.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command, but the
command mnemonic is not found. FcCdCmdController then echoes a command/error message
and returns to User Interface the failure status.

 3-47 305-C
D

-045-001

FoGnCmdFuiProxy FoGnCmdFuiIF FcCdCmdController FcCdCommandDatabase
FdEvEventLogger

Send Cmd Directive

Check
User

Authorization

Request DB info

cmd not found

echo command / log error

provide error status

Figure 3.2.4.5-1. Real Time Command Validation: No command definition

 3-48 305-CD-045-001

3.2.4.6 Real-Time Command Validation: Fail Submnemonic Check Scenario

3.2.4.6.1 Real-Time Command Validation: Fail Submnemonic Check Abstract

The purpose of the "Real-Time Command Validation: Fail Submnemonic Check" scenario is to
describe the process by which a real-time command with a error in a submnemonic specification
is rejected.

Figure 3.2.4.6-1 is the event trace diagram which corresponds to this scenario.

3.2.4.6.2 Real-Time Command Validation: Fail Submnemonic Check Summary Information

Interfaces:

FOS User Interface

Data Management Subsystem

Stimulus:

A command directive with a submnemonic error is forwarded by FOS User Interface
Subsystem.

Desired Response:

FOS User Interface receives the status of the failed command.

Pre-Conditions:

Database must be identified and loaded.

Post-Conditions:

None.

3.2.4.6.3 Scenario Description

Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuiIF provides to FcCdCmdController a real-time command in mnemonic format. The
command in the scenario is a critical command for the ASTER instrument.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded. The query also reveals that: 1) the command is not a load command and 2) the
command for the ASTER instrument. FdEvEventLogger echoes the command, and it is eventually
forwarded (by DMS) to the ASTER control center (as a notification message).

FcCdCmdController then uses the information from the database query in the creation of an
FcCdRtCmd object. During its creation, the FcCdRtCmd object is imbedded with information
supplied by the FcCdCommandDatabase information (such as the binary command, verification
information, prerequisite states, criticality) as well as with information about the user who entered
the command. Thus, the object contains all the information it needs to do validation.

 3-49 305-CD-045-001

FcCdCmdController then invokes the Validate operation of the FcCdRtCmd, which performs
syntax checking of the command directive as items such as submnemonics (required and optional;
database defined default values are substituted for omitted optional submnemonics) are validated.
During this check, the submnemonic error is detected. FcCdRtCmd issues an error status message
to ASTER via FdEvEventLogger, and returns to User Interface the failure status.

 3-50 305-C
D

-045-001

FoGnCmdFuiProxy FoGnCmdFuiIF FcCdCmdController FcCdCommandDatabase FcCdCmdDef FcCdRtCmd
FdEvEventLogger

provide directives

Echo Cmd & Notify ASTER

Check
User

Authorization

Request Cmd Def

Request DB info

Provides DB info

Provides Cmd Def

init & validate

Check
submnemonic

Return unsuccessful validation

log error msg /
send ASTER status

send error status

Figure 3.2.4.6-1. Real Time Command Validation: Fail Submnemonic check

 3-51 305-CD-045-001

3.2.4.7 Real-Time Command Validation: Fail Due to No Override Scenario

3.2.4.7.1 Real-Time Command Validation: Fail Due to No Override Abstract

The purpose of the "Real-Time Command Validation: Fail Due to No Override" scenario is to
describe the process by which the processing of a real-time command is terminated once
1) prerequisite checking has failed, and 2) the operator indicates "cancel" to the subsequent
prerequisite override prompt.

Figure 3.2.4.7-1 is the event trace diagram which corresponds to this scenario.

3.2.4.7.2 Real-Time Command Validation: Fail Due to No Override Summary Information

Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem

Stimulus:

A command directive destined to fail prerequisite state checking is forwarded by FOS User
Interface Subsystem.

Desired Response:

FOS User Interface receives the completion status of the command.

Pre-Conditions:

Database must be identified and loaded.

Post-Conditions:

None.

3.2.4.7.3 Scenario Description

Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuiIF provides to FcCdCmdController a real-time command in mnemonic format. The
command in the scenario is a critical command, for the ASTER instrument.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded. The query also reveals that: 1) the command is not a load command and 2) the
command for the ASTER instrument. FdEvEventLogger echoes the command, and it is eventually
forwarded (by DMS) to the ASTER control center (as a notification message).

FcCdCmdController then uses the information from the database query in the creation of an
FcCdRtCmd object. During its creation, the FcCdRtCmd object is imbedded with information

 3-52 305-CD-045-001

supplied by the FcCdCommandDatabase information (such as the binary command, verification
information, prerequisite states, criticality) as well as with information about the user who entered
command. Thus, the object contains all the information it needs to do validation.

FcCdCmdController then invokes the Validate operation of the FcCdRtCmd which performs the
following:

It does syntax checking of the command directive as items such as submnemonics (required
and optional; database defined default values are substituted for omitted optional
submnemonics) are validated.

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). The CheckPrereq operation performs this function.
The prerequisite check is positive if the telemetry points are active (recently updated) and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the USER to respond allow or
cancel. As this is an asynchronous communication, FcCdRtCmd returns control to the
FcCdCmdController, which resumes polling for all possible messages.
FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdRtCmd by invoking its ProcessPrereqRsp operation. The user's
response is to cancel. This response is forwarded to the FcCdRtCmd object which, via
FdEvEventLogger, logs the error message and notifies the ASTER ICC of the completion
status. FcCdRtCmd then returns to User Interface the command acknowledgment.

 3-53 305-C
D

-045-001

FoGnCmdFuiProxy
FoGnCmdFuiIF

FcCdCmdController FcCdCommandDatabase FcCdCmdDef FcCdRtCmd FoGnCmdTlmProxy FdEvEventLogger

provide directives

Echo Cmd & Notify ASTER

Check
User

Authorization

Request Cmd Def

Request DB info

Provides DB info

Provides Cmd Def

Check
submnemonic

access prerequisite

check tlm

Prompts for override

returns prompt_for_override status

receive telemetry

init & validate

submnemonic check successful

send CANCEL resp.
provide prerequisite response

Process
Prereq. resp.

return unsuccessful status

log error msg /
send ASTER status

ack done

log prereq error

Figure 3.2.4.7-1. Real Time Command Validation: No Prerequisite override

 3-54 305-CD-045-001

3.2.4.8 Real-Time Command Validation: Fail Due to Cancel Critical Scenario

3.2.4.8.1 Real-Time Command Validation: Fail Due to Cancel Critical Abstract

The purpose of the "Real-Time Command Validation: Fail Due to Cancel Critical" scenario is to
describe the process by which a critical real-time command is terminated when the operator
indicates "cancel" to the critical prompt.

Figure 3.2.4.8-1 is the event trace diagram which corresponds to this scenario.

3.2.4.8.2 Real-Time Command Validation: Fail Due to Cancel Critical Summary Information

Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem

Stimulus:

A command directive for a critical command is forwarded by FOS User Interface
Subsystem.

Desired Response:

FOS User Interface receives the status of successful command validation/generation.

Pre-Conditions:

Database must be identified and loaded.

Post-Conditions:

None.

3.2.4.8.3 Scenario Description

Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuiIF provides to FcCdCmdController a real-time command in mnemonic format. The
command in the scenario is a critical command for the ASTER instrument.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded. The query also reveals that: 1) the command is not a load command, and 2) the
command for the ASTER instrument. FdEvEventLogger echoes the command, and it is eventually
forwarded (by DMS) to the ASTER control center (as a notification message).

FcCdCmdController then uses the information from the database query in the creation of an
FcCdRtCmd object. During its creation, the FcCdRtCmd object is imbedded with information
supplied by the FcCdCommandDatabase information (such as the binary command, verification

 3-55 305-CD-045-001

information, prerequisite states, criticality) as well as with information about the user who entered
command. Thus, the object contains all the information it needs to do validation.

FcCdCmdController then invokes the Validate operation of the FcCdRtCmd which performs the
following:

It does syntax checking of the command directive as items such as submnemonics (required
and optional; database defined default values are substituted for omitted optional
submnemonics) are validated.

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performs this function.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the USER to respond allow or
cancel. As this is an asynchronous communication, FcCdRtCmd returns control to the
FcCdCmdController, which resumes polling for all possible messages.
FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdRtCmd by invoking its ProcessPrereqRsp operation. The user's
response is to allow; the proper notifications are made via FdEvEventLogger and validation
processing continues.

It issues a critical prompt to the USER to respond allow or cancel. As this is an
asynchronous communication, FcCdRtCmd returns control to the FcCdCmdController
which resumes polling for all possible messages. FcCdCmdController then receives a FUI
message indicating the user's response. It passes this response to FcCdRtCmd by invoking
its ProcessCriticalRsp operation. The user's response is to cancel. This response is
forwarded to the FcCdRtCmd object which, via FdEvEventLogger, logs the error message
and notifies the ASTER ICC of the completion status. FcCdRtCmd then returns to User
Interface the command acknowledgment.

 3-56 305-C
D

-045-001

FoGnCmdFuiProxy FoGnCmdFuiIF
FcCdCmdController FcCdCommandDatabase FcCdCmdDef FcCdRtCmd FoGnCmdTlmProxy FdEvEventLogger

Send Cmd Directive

Echo Cmd & Notify ASTER

Check
User

Authorization

Request Cmd Def

Request DB info

Provides DB info

Provides Cmd Def

Check
submnemonic

access prerequisite

check tlm

Prompts for override

returns prompt_for_override status

receive telemetry

init & validate

submnemonic check successful

send ALLOW resp.
provide prerequisite response

Process
Prereq. resp.

check critical

prerequisite check successful

prompts for critical command permission

returns prompt_for_permission status

send CANCEL resp.

provide critical response

process
critical response

return validation unsuccessful

log error msg /
send ASTER status

Ack done

Figure 3.2.4.8-1. Real Time Command Validation: Cancel critical

 3-57 305-CD-045-001

3.2.4.9 Stored Command Validation Scenario

3.2.4.9.1 Stored Command Validation Abstract

The purpose of the "Stored Command Validation" scenario is to describe the process by which a
previously uplinked stored command is validated.

Figure 3.2.4.9-1 is the event trace diagram which corresponds to this scenario.

3.2.4.9.2 Stored Command Validation Summary Information

Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem

Stimulus:

A previously uplinked stored command is forwarded by FOS User Interface Subsystem.

Desired Response:

The stored command is successfully validated.

Pre-Conditions:

Database must be identified and loaded.

Post-Conditions:

None.

3.2.4.9.3 Scenario Description

Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuiIF provides to FcCdCmdController a previously uplinked, stored command in
mnemonic format.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded.

 3-58 305-CD-045-001

FcCdCmdController then uses the information from the database query to create an FcCdCmd
object. During its creation, the FcCdCmd object is imbedded with verification information
supplied by the FcCdCommandDatabase.

FcCdCmdController then adds the FcCdCmd object onto the FcCdCmdQueue to be verified.

The command is now successfully validated. FcCdCmdController invokes the PutResponse
function of the FoGnCmdFuiProxy to return an acknowledgment to user interface.

 3-59 305-C
D

-045-001

FoGnCmdFuiIF FcCdCmdController FcCdCommandDatabase

FdEvEventLogger
FcCdCmdDef

FoGnCmdFuiProxy

FcCdCmdQueue

provides Directive

check
User

Authorization

request cmd
definition

provide cmd
definition

echo command

ack done

request DB info

provide DB info

add to queue

Figure 3.2.4.9-1. Stored Command Validation: Verification required

 3-60 305-CD-045-001

3.2.4.10 Stored Command Validation - No Verification Scenario

3.2.4.10.1 Stored Command Validation - No Verification Abstract

The purpose of the "Stored Command Validation - No Verification" scenario is to describe the
process by which a previously uplinked stored command for which no command verification is
specified, is validated.

Figure 3.2.4.10-1 is the event trace diagram which corresponds to this scenario.

3.2.4.10.2 Stored Command Validation - No Verification Summary Information

Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem

Stimulus:

A previously uplinked stored command, for which no command verification is specified, is
forwarded by FOS User Interface Subsystem.

Desired Response:

The stored command is successfully validated, but not added to the queue of commands to
be verified.

Pre-Conditions:

Database must be identified and loaded.

Post-Conditions:

None.

3.2.4.10.3 Scenario Description

Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuiIF provides to FcCdCmdController a previously uplinked, stored command in
mnemonic format.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded.

FcCdCmdController then uses the information from the database query to check if verification is
required for the command. No verification is required, so an event message is issued via
FdEvEventLogger to that effect, and FcCdCmdController invokes the PutResponse function of the
FoGnCmdFuiProxy to return an acknowledgment to user interface.

 3-61 305-C
D

-045-001

FoGnCmdFuiIF FcCdCmdController
FcCdCommandDatabase FdEvEventLogger

FcCdCmdDefFoGnCmdFuiProxy
FcCdCmdQueue

provides Directive

check
User

Authorization

request cmd
definition

provide cmd
definition

echo command, stating no verification

ack done

request DB info

provide DB info

No Verification
Specified

Figure 3.2.4.10-1. Stored Command Validation: No Verification required

 3-62 305-CD-045-001

3.2.4.11 Write Configuration Snapshot Request Scenario

3.2.4.11.1 Write Configuration Snapshot Request Abstract

The purpose of the "Write Configuration Snapshot Request" scenario is to describe the process by
which the current state of a FormatCommand process is stored.

Figure 3.2.4.11-1 is the event trace diagram which corresponds to this scenario.

3.2.4.11.2 Write Configuration Snapshot Request Summary Information

Interfaces:

Resource Manager Interface

Data Management Subsystem

Stimulus:

A "Configuration Snapshot Request" is forwarded by the Resource Manager Subsystem.

Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

Database must be identified and loaded.

Post-Conditions:

The state information is stored in the specified file.

3.2.4.11.3 Scenario Description

A Resource Managment "Configuration Snapshot Request" request is accepted by the Command
Controller. The snapshot file specified in the request is accessed via FoDsFile, and the current state
information is stored into the file. A successful status is returned to the Resource Manager.

 3-63 305-C
D

-045-001

FoGnCmdRmsIF FcCdCmdController FoDsFile

write config snapshot request

Return Status

Store Config info

Figure 3.2.4.11-1. Write Configuration Snapshot request

 3-64 305-CD-045-001

3.2.4.12 Read Configuration Snapshot Request Scenario

3.2.4.12.1 Read Configuration Snapshot Request Abstract

The purpose of the "Read Configuration Snapshot Request" scenario is to describe the process by
which the FormatCommand process is restored to a predetermined state.

Figure 3.2.4.12-1 is the event trace diagram which corresponds to this scenario.

3.2.4.12.2 Read Configuration Snapshot Request Summary Information

Interfaces:

Resource Manager Interface

Data Management Subsystem

Stimulus:

A request to "Read Configuration Snapshot" is forwarded by the Resource Manager
Subsystem.

Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

None.

Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.12.3 Scenario Description

A Resource Management "Read Configuration Snapshot" request is accepted by the Command
Controller. The snapshot file specified in the request is accessed via FoDsFile, and the information
retrieved is used to update the state of the FormatCommand process. A successful status is
returned to the Resource Manager.

 3-65 305-C
D

-045-001

FoGnCmdRmsIF FcCdCmdController FoDsFile

read request snapshot request

Update Config

Return Status

request config info

provide config info

Figure 3.2.4.12-1. Read Configuration Snapshot request

 3-66 305-CD-045-001

3.2.4.13 Load Command Validation: Successful Scenario

3.2.4.13.1 Load Command Validation: Successful Abstract

The purpose of the "Load Command Validation: Successful" scenario is to describe the process by
which a load file is processed for uplinking.

Figure 3.2.4.13-1 is the event trace diagram which corresponds to this scenario.

3.2.4.13.2 Load Command Validation: Successful Summary Information

Interfaces:

FOS User Interface

Data Management Subsystem

FopCommand

Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.

Desired Response:

FOS User Interface receives the status of successful load command validation.

Pre-Conditions:

Catalog Entry and data for the load exist.

Post-Conditions:

The contents of the load file have been forwarded to FopCommand.

3.2.4.13.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time directive. The directive in the
scenario is a load directive to process a load with critical commands.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the LoadId. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) are read in. The load catalog entry contains : critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdLoadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

 3-67 305-CD-045-001

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that all prior partitions for this load have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdLoadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdLoadData returns a status
indicating waiting for user's response to FcCdLoadCmd which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPartitionRsp operation. The user's
response is "allow" and validation processing continues. The ProcessPartitionRsp
operation log event via FdEvEventLogger and performs the following:

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performs this function.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the user to respond allow or cancel.
As this is an asynchronous communication, FcCdLoadCmd returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPrereqRsp operation. The user's
response is to allow; FcCdLoadCmd sends an event message via FdEvEventLogger and
validation processing continues.

FcCdLoadCmd issues a critical prompt to the user to respond allow or cancel. As this is an
asynchronous communication, FcCdLoadCmd returns control to the FcCdCmdController,
which resumes polling for all possible messages. FcCdCmdController then receives a FUI
message indicating the user's response. It passes this response to FcCdLoadCmd by
invoking its ProcessCriticalRsp operation. The user's response is to allow, the proper
notifications are made via FdEvEventLogger and control returns to FcCdCmdController.

The load command is now successfully validated and the content is ready to be processed.

The load file is comprised of CCSDS packets. FcCdCmdController processes each packet in the
file as follows:

It invokes the SendLoad operation of FcCdLoadCmd, which invokes the SendPacket operation of
FcCdLoadData. This operation forwards one packet at a time to FopCommand via
FoGnCmdFopProxy. FcCdCommandController waits for acknowledgment from FopCommand
(via FoGnCmdFopIF) before proceeding to the next packet in the load file (a return status to
FcCdCommandController indicates when the last packet of the load has been sent out).

Upon acknowledgment of the last packet, FcCdCommandController notifies FUI (via
FjoGnCmdFuiIF) of completion of its request, and adds the FcCdLoadCmd to the queue of
commands waiting verification.

 3-68 305-C
D

-045-001

FoGnCmdFuiProxy FoGnCmdFuiIF FcCdCmdController FcCdLoadCmd FcCdLoadData FoDsFile FdEvEventLogger
FoGnCmdFopIF FoGnCmdFopProxy

FcCdCmdQueue

.

.

.

.

FoLdCatalogEntry

Provides
Load directive

init & Validate

Init

Request Load
Data

Provides Load
Data

Return Success
status

Validate

Validate
Parameters

Return Success
status

Check Critical

Log Critical Load Event

Prompt for Critical Permission

Returns
Prompt_for_Permission

Sends ALLOW

Provides
Permission resp.

Process
Critical resp.

Log critical check successful

return Success
status

Validation Successful

Send

Send Packet

return status

return Success/
Has more packet

to send

Send out next packet

receipt ack

Send

Send

Send Packet

Send out next packet

return status

return success/
Finish load

receipt ack

ack done

user authorized
successful

add to queue

request parameters

provide parameters

request
parameters

provide
parameters

check prereq

check
uplink time

prompts for override

return status

send ALLOW

provide resp.

prompts for permission

return status

send ALLOW

provide resp.

process resp.

process resp.

log Prerequisite passed

log ALLOW event

log wrong order event

Figure 3.2.4.13-1. Load Command Validation: Successful Event Trace

 3-69 305-CD-045-001

3.2.4.14 Load Command Validation: Fail Due to Missing Load Scenario

3.2.4.14.1 Load Command Validation: Fail Due to Missing Load Abstract

The purpose of the "Load Command Validation: Fail Due to Missing Load" scenario is to describe
the process by which the load is not uplinked due to missing load data.

Figure 3.2.4.14-1 is the event trace diagram which corresponds to this scenario.

3.2.4.14.2 Load Command Validation: Fail Due to Missing Load Summary Information

Interfaces:

Resource Manager Interface

Data Management Subsystem

Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.

Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

None.

Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.14.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time directive. The directive in the
scenario is a load directive to process a load with critical commands.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the LoadId. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) are read in. The load catalog entry contains : critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisitecheck (Pid,
prerequisite type and ranges). In this scenario, there is no load data corresponding to the LoadId.
The FcCdLoadData object logs an error message to FdEvEventLogger, provides error status to FUI
and returns unsuccessful status to FcCdLoadCmd, which , in turn, returns unsuccessful status to
FcCdCmdController.

 3-70 305-C
D

-045-001

FoGnCmdFuiIF FcCdCmdController
FcCdLoadCmd

FcCdLoadData FoDsFile FdEvEventLogger

FoGnCmdFuiProxy FoLdCatalogEntry

Provides
Load directive

init & Validate

Init

Request Load
Data

Load not found

Log error message

provide error status

return unsuccessful
status

user authorized
successful

request parameters

provide parameters

return unsuccessful
status

Figure 3.2.4.14-1. Load Command Validation: Unsuccessful due to missing load

 3-71 305-CD-045-001

3.2.4.15 Load Command Validation: Fail Due to Invalid Parameter Scenario

3.2.4.15.1 Load Command Validation: Fail Due to Invalid Parameter Abstract

The purpose of the "Load Command Validation: Fail Due to Invalid Parameter" scenario is to
describe the process by which the load is not uplinked due to invalid load parameters.

Figure 3.2.4.15-1 is the event trace diagram which corresponds to this scenario.

3.2.4.15.2 Load Command Validation: Fail Due to Invalid Parameter Summary Information

Interfaces:

Resource Manager Interface

Data Management Subsystem

Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.

Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

None.

Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.15.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time directive. The directive in the
scenario is a load directive to process a load with critical commands.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the LoadId. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) are read in. The load catalog entry contains : critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdLoadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which first
performs the validation of load parameters:

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

 3-72 305-CD-045-001

It ensures that the current time is within the valid window period of time specified in the header.

In this scenario, either the spacecraftIds are not the same or the current time is outside the valid
time window. The FcCdLoadData then logs an error message via FdEvEventLogger, sends an
error status to FUI, and returns failure status to FcCdLoadCmd, which, in turn, return unsuccessful
status to FcCdCmdController.

 3-73 305-C
D

-045-001

FoGnCmdFuiIF FcCdCmdController FcCdLoadCmd FcCdLoadData FoDsFile
FdEvEventLogger

FoGnCmdFuiProxy FoLdCatalogEntry

Provides
Load directive

init & Validate

Init

Request Load
Data

Provides Load
Data

Return Success
status

Validate

Validate
Parameters

Return Failure
status

Log error message

return Unsuccessful
validation

user authorized
successful

Provides error status

request parameters

provide parameters

request params

provide params

Figure 3.2.4.15-1. Load Command Validation: Unsuccessful due to Invalid Parameters

 3-74 305-CD-045-001

3.2.4.16 Load Command Validation: Fail Due to Cancel Out-of-Ordered
Partition Scenario

3.2.4.16.1 Load Command Validation: Fail Due to Cancel Out-of-Ordered Partition Abstract

The purpose of the "Load Command Validation: Fail Due to Cancel Out-of-Ordered Partition"
scenario is to describe the process by the load is not uplinked when user indicates Cancel to the
Override-Out-of-Ordered prompt.

Figure 3.2.4.16-1 is the event trace diagram which corresponds to this scenario.

3.2.4.16.2 Load Command Validation: Fail Due to Cancel Out-of-Ordered Partition Summary
Information

Interfaces:

Resource Manager Interface

Data Management Subsystem

Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.

Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

One or more previous partitions have not been uplinked or the current load/partition was
already uplinked.

Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.16.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time directive. The directive in the
scenario is a load directive to process a load with critical commands.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the LoadId. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) are read in. The load catalog entry contains : critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdLoadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

 3-75 305-CD-045-001

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that all prior partitions for this load have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdLoadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdLoadData returns a status to
FcCdLoadCmd, indicating waiting for user's response, which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its Process PartitionRsp operation. In this
scenario, the user's response is "cancel". The FcCdLoadCmd object log cancel message to
FdEvEventLogger, sends an ack to FUI and returns control to FcCdCmdController.

 3-76 305-C
D

-045-001

FoGnCmdFuiProxy
FoGnCmdFuiIF FcCdCmdController FcCdLoadCmd FcCdLoadData FoDsFile

FdEvEventLogger
FoLdCatalogEntry

Provides
Load directive

init & Validate

Init

Request Load
Data

Provides Load
Data

Return Success
status

Validate

Validate
Parameters

Return Success
validate

ack done

return Validation
Unsuccessful

user authorized
successful

check uplink time

process resp.

provide resp.

send CANCEL

return status

prompts for permission

request parameters

provide parameters

log cancel event

request params

provide params

log wrong order event

Figure 3.2.4.16-1. Load Command Validation: Unsuccessful due to canceling out-of-ordered partition

 3-77 305-CD-045-001

3.2.4.17 Load Command Validation: Fail Due to Cancel Prerequisite Override
Scenario

3.2.4.17.1 Load Command Validation: Fail Due to Cancel Prerequisite Override Abstract

The purpose of the "Load Command Validation: Fail Due to Cancel Prerequisite Override"
scenario is to describe the process by which the load is not uplinked when the user indicates cancel
to the prerequisite override prompt.

Figure 3.2.4.17-1 is the event trace diagram which corresponds to this scenario.

3.2.4.17.2 Load Command Validation: Fail Due to Cancel Prerequisite Override Summary
Information

Interfaces:

Resource Manager Interface

Data Management Subsystem

Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.

Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

None.

Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.17.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time directive. The directive in the
scenario is a load directive to process a load with critical commands.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the LoadId. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) are read in. The load catalog entry contains : critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdLoadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

 3-78 305-CD-045-001

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that all prior partitions for this load have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdLoadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdLoadData returns a status
indicating waiting for user's response to FcCdLoadCmd which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPartitionRsp operation. The user's
response is "allow" and validation processing continues. The ProcessPartitionRsp
operation log event via FdEvEventLogger and performs the following:

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performs this function.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the USER to respond allow or
cancel. As this is an asynchronous communication, FcCdRtCmd returns control to the
FcCdCmdController.

 FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdRtCmd by invoking its ProcessPrereqRsp operation. The user's
response is to cancel. The FcCdLoadCmd logs a message via FdEvEventLogger, sends an
ack to FUI and returns unsuccessful status to FcCdCmdController.

 3-79 305-C
D

-045-001

FoGnCmdFuiProxy
FoGnCmdFuiIF FcCdCmdController FcCdLoadCmd FcCdLoadData FoDsFile FdEvEventLogger FoLdCatalogEntry

Provides
Load directive

init & Validate

Init

Request Load
Data

Provides Load
Data

Return Success
status

Validate

Validate
Parameters

Return Success
validate

ack done

return Validation
Unsuccessful

user authorized
successful

check uplink time

check prereq

log fail prerequisite check

process resp.

provide resp.

send CANCEL

return status

prompts for override

process resp.

provide resp.
send ALLOW

return status

prompts for permission

request parameters

provide parameters

request params

provide params

log event

log wrong order event

Figure 3.2.4.17-1. Load Command Validation: Unsuccessful due to no prerequisite override

 3-80 305-CD-045-001

3.2.4.18 Load Command Validation: Fail Due to Cancel Critical Scenario

3.2.4.18.1 Load Command Validation: Fail Due to Cancel Critical Abstract

The purpose of the "Load Command Validation: Fail Due to Cancel Critical" scenario is to
describe the process by which the load is not uplinked when the user indicates cancel to the critical
prompt.

Figure 3.2.4.18-1 is the event trace diagram which corresponds to this scenario.

3.2.4.18.2 Load Command Validation: Fail Due to Cancel Critical Summary Information

Interfaces:

Resource Manager Interface

Data Management Subsystem

Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.

Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

None.

Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.18.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time directive. The directive in the
scenario is a load directive to process a load with critical commands.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the LoadId. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) are read in. The load catalog entry contains : critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdLoadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

 3-81 305-CD-045-001

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that all prior partitions for this load have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdLoadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdLoadData returns a status
indicating waiting for user's response to FcCdLoadCmd which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPartitionRsp operation. The user's
response is "allow" and validation processing continues. The ProcessPartitionRsp
operation log event via FdEvEventLogger and performs the following:

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performs this function.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the user to respond allow or cancel.
As this is an asynchronous communication, FcCdLoadCmd returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPrereqRsp operation. The user's
response is to allow; FcCdLoadCmd sends an event message via FdEvEventLogger and
validation processing continues.

FcCdLoadCmd issues a critical prompt to the user to respond allow or cancel. As this is an
asynchronous communication, FcCdLoadCmd returns control to the FcCdCmdController.

 FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessCriticalRsp operation. The user's
response is to cancel. The FcCdLoadCmd logs a message via FdEvEventLogger, sends an
ack to FUI and returns unsuccessful status to FcCdCmdController.

 3-82 305-C
D

-045-001

FoGnCmdFuiProxy FoGnCmdFuiIF FcCdCmdController FcCdLoadCmd FcCdLoadData FoDsFile FdEvEventLogger
FoLdCatalogEntry

Provides
Load directive

init & Validate

Init

Request Load
Data

Provides Load
Data

Return Success
status

Validate

Validate
Parameters

Return Success
validate

Check Critical

Log Critical Load Event
Prompt for Critical Permission

Returns
Prompt_for_Permission

Sends CANCEL

Provides
Permission resp.

Process
Critical resp.

Log critical command canceled

ack done

return Validation
Unsuccessful

user authorized
successful

check uplink time

check prereq

log pass prereq check

process resp.

provide resp.

send ALLOW

return status

prompts for override

process resp.

provide resp.
send ALLOW

return status

prompts for permission

request parameters

provide parameters

request params

provide params

log allow event

log wrong order event

Figure 3.2.4.18-1. Load Command Validation: Unsuccessful due to canceling critical

 3-83 305-CD-045-001

3.2.4.19 Load Command Validation: Abort Scenario

3.2.4.19.1 Load Command Validation: Abort Abstract

The purpose of the "Load Command Validation: Abort" scenario is to describe the process by
which a load file processing is stopped via an abort directive.

Figure 3.2.4.19-1 is the event trace diagram which corresponds to this scenario.

3.2.4.19.2 Load Command Validation: Abort Summary Information

Interfaces:

FOS User Interface

Data Management Subsystem

FopCommand

Stimulus:

A load command is forwarded by FOS User Interface Subsystem.

Desired Response:

FOS User Interface receives the status of successful load command validation/generation.

Pre-Conditions:

None.

Post-Conditions:

The contents of the load file have been forwarded to FopCommand.

3.2.4.19.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time directive. The directive in the
scenario is a load directive to process a load with critical commands.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the LoadId. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) are read in. The load catalog entry contains : critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check
(P(Pid, prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdLoadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

 3-84 305-CD-045-001

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that all prior partitions for this load have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdLoadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdLoadData returns a status
indicating waiting for user's response to FcCdLoadCmd which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPartitionRsp operation. The user's
response is "allow" and validation processing continues. The ProcessPartitionRsp
operation log event via FdEvEventLogger and performs the following:

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performs this function.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the user to respond allow or cancel.
As this is an asynchronous communication, FcCdLoadCmd returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPrereqRsp operation. The user's
response is to allow; FcCdLoadCmd sends an event message via FdEvEventLogger and
validation processing continues.

FcCdLoadCmd issues a critical prompt to the user to respond allow or cancel. As this is an
asynchronous communication, FcCdLoadCmd returns control to the FcCdCmdController,
which resumes polling for all possible messages. FcCdCmdController then receives a FUI
message indicating the user's response. It passes this response to FcCdLoadCmd by
invoking its ProcessCriticalRsp operation. The user's response is to allow, the proper
notifications are made via FdEvEventLogger and control returns to FcCdCmdController.

The load command is now successfully validated and the content is ready to be processed.

The load file is comprised of CCSDS packets. FcCdCmdController processes each packet in the
file as follows:

It invokes the SendLoad operation of FcCdLoadCmd, which invokes the SendPacket operation of
FcCdLoadData. This operation forwards one packet at a time to FopCommand via
FoGnCmdFopProxy. FcCdCommandController waits for acknowledgment from FopCommand
(via FoGnCmdFopIF) before proceeding to the next packet in the load file (a return status to
FcCdCommandController indicates when the last packet of the load has been sent out).

In this scenario, after several packets are forwarded to FopCommand, an abort directive is
received. The FcCdCmdController destructs the FcCdLoadCmd object, which in turn destructs the
FcCdLoadData object. The FcCdCmdController then sends an ack to FUI.

 3-85 305-C
D

-045-001 Figure 3.2.4.19-1. Load Command: Abort Load

FoGnCmdFuiProxy FoGnCmdFuiIF FcCdCmdController FcCdLoadCmd FcCdLoadData FoDsFile FdEvEventLogger FoGnCmdFopIF
FoGnCmdFopProxy

.

.

.

.

FoLdCatalogEnt

Provides
Load directive

init & Validate

Init

Request Load
Data

Provides Load
Data

Return Success
status

Validate

Validate
Parameters

Return Success
status

Check Critical

Log Critical Load Event

Prompt for Critical Permission

Returns
Prompt_for_Permission

Sends ALLOW

Provides
Permission resp.

Process
Critical resp.

Log critical check successful

return Success
status

Validation Successful

Send

Send Packet

return status

return Success/
Has more packet

to send

Send out next packet

receipt ack

Send

Send

Send Packet

Send out next packet

return status

return success/
Has more packets

user authorized
successful

abort

ack done

kill

get load
parameters

provide load
parameters

check uplink time

check prereq

log pass prereq check

request parameters

provide parameters

prompts for permission

return status

send ALLOW
provide resp.

prompts for override

return status

send ALLOW

check resp.

provide resp.

process resp.

log allow event

log wrong order event

 3-86 305-CD-045-001

3.2.4.20 Real-Time Command Verification: Success Scenario

3.2.4.20.1 Real-Time Command Verification: Success Abstract

The purpose of the "Real-Time Command Verification: Success" scenario is to describe the
process by which real time commands are telemetry verified.

Figure 3.2.4.20-1 is the event trace diagram which corresponds to this scenario.

3.2.4.20.2 Real-Time Command Verification: Success Summary Information

Interfaces:

FOS User Interface

Data Management Subsystem

Telemetry Subsystem

FopCommand

Stimulus:

A command receipt is received from FopCommand.

Desired Response:

User Interface is notified of telemetry verification of the command.

Pre-Conditions:

The command queue contains at least one command: the command corresponding to the
command receipt mentioned above.

Post-Conditions:

The command corresponding to the command receipt has been removed from the command
queue.

3.2.4.20.3 Scenario Description

FcCdCommandController receives a command receipt from FopCommand via
FoCmCCSDSFopProxy, and FUI is notified of the command's upgraded status via
FoGnCmdFuiIF. FcCdCmdQueue is requested to begin verification of the command if there is a
verification parameter. The command (FcCdCmd) is found in the queue, and the parameter service
list is updated to reflect the new telemetry parameter required for verification of this command
through FoGnCmdTlmProxy.

As telemetry is received, FcCdCommandController is sent a list of updated telemetry parameters
via the TlmParamerterServerProxy. This list is forwarded to FcCdCmdQueue. The list of
telemetry PIDs is traversed. For each PID, all outstanding commands (FcCdCmd objects) which
need that PID for verification are checked. The telemetry value supplied in this list is not within
the range required to verify the command, so the command remains unverified at this time. This
sequence may be repeated several times before verification takes place.

FcCdCommandController is eventually sent a list of updated telemetry parameters one of which
will verify the traced command via the TlmParamerterServerProxy which is forwarded to
FcCdCmdQueue. The list of telemetry PIDs is traversed and for each PID, all outstanding
commands (FcCdCmd objects) which need that PID for verification are checked. The telemetry

 3-87 305-CD-045-001

value supplied in this list however, is within the range required to verify the command, and the
command is thus telemetry verified.

FUI is notified of the telemetry verification status via FoGnCmdFuiIF, an event message to that
effect is logged via FdEvEventLogger, and the command is removed from FcCdCmdQueue.

After all of the telemetry PIDs have been checked, the PID list is updated to reflect only those PIDs
needed for the current (i.e., smaller) list of outstanding commands in FcCdCmdQueue which still
need to be telemetry verified. This revised PID list is then sent to TlmParameterServerProxy.

 3-88 305-C
D

-045-001

TLM Parameter Server Proxy FcCdCmdController FcCdCmdFcCdCmdQueue FoGnCmdFuiIf FdEvEventLoggerFoCmCCSDSFopProxy

sends list of
updated parameters

forwards list

goes through list,
param for command is

in list

check if param
verifies command

value does not verify
sends list of

updated parameters
forwards list

goes through list,
param for command is

in list

check if param
verifies command

value verifies command

remove command from
queue

tlm verified

process remainder
of update list

send updated parameter list

log tlm verified

notifies that cmd is receipt verified

tells to begin tlm

adds to param service list

notifies of receipt verification

param does not verify

param verifies

Figure 3.2.4.20-1. Real-Time Command Verification: Successful Event Trace

 3-89 305-CD-045-001

3.2.4.21 Real-Time Command Verification: Failure Due to Timeout Scenario

3.2.4.21.1 Real-Time Command Verification: Failure Due to Timeout Abstract

The purpose of the "Real-Time Command Verification: Failure Due to Timeout" scenario is to
describe the process by which real-time commands which have not telemetry verified in the
database prescribed time limit are taken off the queue and proper notification is accomplished

Figure 3.2.4.21-1 is the event trace diagram which corresponds to this scenario.

3.2.4.21.2 Real-Time Command Verification: Failure Due to Timeout Summary Information

Interfaces:

TLM, FUI, DMS, FopCommand

Stimulus:

It is found that the command has not been verified in the allowed time period.

Desired Response:

The command is removed from the queue and appropriate notification is done..

Pre-Conditions:

None.

Post-Conditions:

The command is no longer on the queue.

3.2.4.21.3 Scenario Description

FcCdCommandController receives a command receipt from FopCommand via
FoCmCCSDSFopProxy, and FUI is notified of the command's status via FoGnCmdFuiIF.
FcCdCmdQueue is requested to begin verification of the command if there is a verification
parameter. The command (FcCdCmd) is found in the queue, and the parameter service list is
updated to reflect the new telemetry parameter required for verification of this command through
FoGnCmdTlmProxy.

As telemetry is received, FcCdCommandController is sent a list of updated telemetry parameters
via the TlmParamerterServerProxy. This list is forwarded to FcCdCmdQueue. The list of
telemetry PIDs is traversed. For each PID, all outstanding commands (FcCdCmd objects) which
need that PID for verification are checked. The telemetry value supplied in this list is not within
the range required to verify the command, so the command remains unverified at this time. This
sequence is repeated several times but none of the supplied updates of the parameter verifies the
command. Meanwhile, at regular intervals, triggered by a timer, FcCdCmdController calls
FcCdCmdQueue::CheckTimes() which then polls each command on the queue to see if it has timed
out. Eventually, after the traced command has been on the queue for the maximum time,
CheckTimes() is told by the traced command (FcCdRtCmd) that it has timed out. The command
itself logs this event and notifies Fui, and the queue removes the command, and updates the
parameter service list.

 3-90 305-C
D

-045-001

Tlm Parameter Server Proxy FcCdCmdController FcCdCmdFcCdCmdQueue FoGnCmdFuiIfFdEvEventLoggerFoCmCCSDSFopProxy

sends list of
updated parameters forwards list

goes through list,
param for command is

in list

check if param
verifies command

value does not verifysends list of
updated parameters forwards list

goes through list,
param for command is

in list

check if param
verifies command

value does not verify

send updated parameter list

invokes CheckTimes()

goes through list,
finds command

invokes Timeout()

returns TRUE

remove command from queue

notify that TLM verify has timed out for command

log timeout event

notifies that command is receipt verified
passes along notification

tells to begin tlm

adds param to service list

value does not verify

value does not verify

Figure 3.2.4.21-1. Real-Time Command Verification: Fail due to time out

 3-91 305-CD-045-001

3.2.4.22 Real-Time Load Verification: Success Scenario

3.2.4.22.1 Real-Time Load Verification: Success Abstract

The purpose of the "Real-Time Load Verification: Success" scenario is to describe the process by
which real time loads are telemetry verified.

Figure 3.2.4.22-1 is the event trace diagram which corresponds to this scenario.

3.2.4.22.2 Real-Time Load Verification: Success Summary Information

Interfaces:

FOS User Interface

Data Management Subsystem

Telemetry Subsystem

FopCommand

Stimulus:

A command receipt is received from FopCommand.

Desired Response:

User Interface is notified of telemetry verification of the load.

Pre-Conditions:

The command queue contains at least one command; the command corresponding to the
load receipt mentioned above.

Post-Conditions:

The command corresponding to the load receipt has been removed from the command
queue.

3.2.4.22.3 Scenario Description

FcCdCommandController receives a command receipt that corresponds to the last packet in the
load, from FopCommand (via FoCmCCSDSFopProxy). FUI is notified of the load's upgraded
(uplink verified) status via FoGnCmdFuiIF. FcCdCmdQueue is requested to begin verification of
the load. The command (FcCdCmd) corresponding to the load is found in the queue, and the
parameter service list is updated to reflect the new telemetry parameters (i.e., the CRC) required
for verification of the load through FoGnCmdTlmProxy.

As telemetry is received, FcCdCommandController is sent a list of updated telemetry parameters
via the TlmParamerterServerProxy. This list is forwarded to FcCdCmdQueue. The list of
telemetry PIDs is traversed. For each PID, all outstanding commands (FcCdCmd objects) which
need that PID for verification are checked. The telemeter CRC value supplied in this list does not
confirm the load verification the command, so the load remains unverified at this time.

FcCdCommandController is then sent a second list of updated telemetry parameters via the
TlmParamerterServerProxy which is forwarded to FcCdCmdQueue. The list of telemetry PIDs is
traversed and for each PID, all outstanding commands (FcCdCmd objects) which need that PID for
verification are checked. The telemeter CRC value supplied in this list this time matches the CRC
retained from the load header (as myCRCRWCString), and the load is thus telemetry verified.

 3-92 305-CD-045-001

FUI is notified of the telemetry verification status via FoGnCmdFuiIF, an event message to that
effect is logged via FdEvEventLogger, and the load command is removed from FcCdCmdQueue.

After all of the telemetry PIDs have been checked, the PID list is updated to reflect only those PIDs
needed for the current (i.e., smaller) list of outstanding commands in FcCdCmdQueue which still
need to be telemetry verified. This revised PID list is then sent to TlmParameterServerProxy.

 3-93 305-C
D

-045-001

TLM Parameter Server Proxy FcCdCmdController FcCdLoadCmdFcCdCmdQueue FoGnCmdFuiIf FdEvEventLoggerFoCmCCSDSFopProxy

sends list of
updated parameters

forwards list

goes through list,
param for Load is

in list

check if param
verifies load

value does not verify
sends list of

updated parameters
forwards list

goes through list,
param for Load is

in list

check if param
verifies load

value verifies load

remove load from
queue

tlm verified

process remainder
of update list

send updated parameter list

log tlm verified

notifies that load is receipt verified

passes along notification

tells to begin tlm

adds param to service list

check param

Figure 3.2.4.22-1. Real-Time Load Verification: Successful Event Trace

 3-94 305-CD-045-001

3.2.4.23 Real-Time Load Verification: Failure Due to Timeout Scenario

3.2.4.23.1 Real-Time Load Verification: Failure Due to Timeout Abstract

The purpose of the "Real-Time Load Verification: Failure Due to Timeout" scenario is to describe
the process by which real-time load commands which have not telemetry verified in the database
prescribed time limit are taken off the queue and proper notification is accomplished

Figure 3.2.4.23-1 is the event trace diagram which corresponds to this scenario.

3.2.4.23.2 Real-Time Load Verification: Failure Due to Timeout Summary Information

Interfaces:

TLM, DMS, FUI

Stimulus:

It is found that the load has not been verified in the allowed time period.

Desired Response:

The load command is removed from the queue and notification is done.

Pre-Conditions:

None.

Post-Conditions:

The load command is no longer on the queue.

3.2.4.23.3 Scenario Description

FcCdCommandController receives a load command receipt from FopCommand via
FoCmCCSDSFopProxy, and FUI is notified of the load command's upgraded status via
FoGnCmdFuiIF. FcCdCmdQueue is requested to begin verification of the load command. The
load command (FcCdLoadCmd) is found in the queue, and the parameter service list is updated to
reflect the new telemetry parameter required for verification of this command through
FoGnCmdTlmProxy.

As telemetry is received, FcCdCommandController is sent a list of updated telemetry parameters
via the TlmParamerterServerProxy. This list is forwarded to FcCdCmdQueue. The list of
telemetry PIDs is traversed. For each PID, all outstanding commands, including loads, (FcCdCmd
objects) which need that PID for verification are checked. The telemetry value supplied in this list
is not within the range required to verify the load command, so the load command remains
unverified at this time. This sequence is repeated several times but none of the supplied updates
of the parameter verifies the load command.

Meanwhile, at regular intervals, triggered by a timer, FcCdCmdController calls
FcCdCmdQueue::CheckTimes() which then polls each command on the queue to see if it has timed
out. Eventually, after the traced load command has been on the queue for the maximum time,
CheckTimes() is told by the traced load command (FcCdLoadCmd) that it has timed out. The load
command itself logs this event and notifies Fui, and the queue removes the load command, and
updates the parameter service list.

 3-95 305-C
D

-045-001

TLM Parameter Server Proxy FcCdCmdController FcCdLoadCmdFcCdCmdQueue FoGnCmdFuiIfFdEvEventLogger
FoCmCCSDSFopProxy

sends list of
updated parameters

forwards list

goes through list,
param for Load is

in list

check if param
verifies load

value does not verifysends list of
updated parameters forwards list

goes through list,
param for Load is

in list

check if param
verifies load

value does not verify

send updated parameter list

invokes CheckTimes()

goes through list,
finds Load

invokes Timeout()

returns TRUE

remove Load from queue

notify that tlm verify has timed out for Load

log timeout event

notifies that load is receipt verified
passes along notification

tells to begin tlm

adds param to service list

value does not verify

value does not verify

Figure 3.2.4.23-1. Real-Time Load Verification: Failure due to time out

 3-96 305-CD-045-001

3.2.4.24 Real-Time Dump Command Scenario

3.2.4.24.1 Real-Time Dump Command Abstract

The purpose of the "Real-Time Command Verification: Success" scenario is to describe the
process by which real time commands are telemetry verified.

Figure 3.2.4.24-1 is the event trace diagram which corresponds to this scenario.

3.2.4.24.2 Real-Time Dump Command Summary Information

Interfaces:

TLM, DMS

Stimulus:

A dump command is received by FcCdCmdController.

Desired Response:

TLM is notified of the impending dump.

Pre-Conditions:

None.

Post-Conditions:

TLM has been warned.

3.2.4.24.3 Scenario Description

The dump notification scenario is identical to the realtime command validation success scenario,
except:

When the command database is accessed by FcCdCmdController, the dump command flag in the
database is set. After the command is validated, FcCdCmdController checks this flag, and since it
is set, it sends a notification to TLM that a dump is imminent.

 3-97 305-C
D

-045-001

FoGnCmdFuiProxy
FoGnCmdFuiIF

FcCdCmdController FcCdCommandDatabase FcCdCmdDef FcCdRtCmd FoGnCmdTlmProxy FdEvEventLogger
FoCmCCSDSFopProxy

FcCdCmdQueue FoGnFormatTlmIf

provides Directives

Echo command & Notify ASTER

Check
User

Authorization

Request Cmd Def

Request DB info

Provides DB info

Provides Cmd Def

Check
submnemonic

access prerequisite

check tlm

Prompts for override

returns prompt_for_override status

receive telemetry

init & validate

submnemonic check successful

send ALLOW resp.
provide prerequisite response

Process
Prereq. resp.

check critical

prereq. check successful

prompts for critical command permission

returns prompt_for_permission status

send ALLOW resp.

provide critical response

process
critical response

build cmd

provide successful status

ack done

provides command to

build

validation successful

return success status

critical check successful

log prereq check override

add to queue

done

notify TLM of imminent dump

Figure 3.2.4.24-1. Real Time Dump

 3-98 305-CD-045-001

3.2.4.25 Hex Command Validation: Success Scenario

3.2.4.25.1 Hex Command Validation: Success Abstract

The purpose of the "Hex Command Validation: Success" scenario is to describe the process by
which the Hex command is successfully validated.

Figure 3.2.4.25-1 is the event trace diagram which corresponds to this scenario.

3.2.4.25.2 Hex Command Validation: Success Summary Information

Interfaces:

FOS User Interface

FopCommand

Data Management Subsystem

Stimulus:

A hex formatted command is forwarded by FOS User Interface to the Command
Subsystem.

Desired Response:

FOS User Interface receives the status of successful command validation/generation.

Pre-Conditions:

None.

Post-Conditions:

The command has been forwarded to FopCommand for eventual uplinking.

3.2.4.25.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time command, in hex format; i.e., already
in 1553-b format.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

A FcCdHexCmd object is created, and its CheckCritical operation is invoked. A critical prompt is
issued to the authorized user to respond allow or cancel. As this is an asynchronous
communication, FcCdRtCmd returns control to the FcCdCmdController, which resumes polling
for all possible messages. FcCdCmdController then receives a FUI message indicating the user's
response. It passes this response to FcCdRtCmd by invoking its ProcessCriticalRsp operation. The
user's response is to allow, the proper notifications are made via FdEvEventLogger and control
returns to FcCdCmdController.

FcCdCmdController invokes the SendCmd operation of FcCdHexCmd. The command is then
forwarded to FopCommand via FoGnCmdFopProxy. Upon receipt of acknowledgment from
FopCommand (via FoGGnCmdFopIF), FcCdCommandController notifies FUI (via
FjoGnCmdFuiIF) of completion of its request, and adds the FcCdHexCmd to the queue of
commands waiting uplink verification.

 3-99 305-C
D

-045-001

FoGnCmdFuiProxy FoGnCmdFuiIF FcCdCmdController FcCdHexCmd FdEvEventLogger FoGnCmdFopProxy FoGnCmdFopIF FcCdCmdQueue

sends cmd directive

user authorized
successful

creates

invokes check
critical function

log event

prompts for critical command permission

returns prompt for
permission status

send ALLOW resp.

provides resp.

process critical
response

critical check
successful

ack done

send receipt ack

return success status

return success
status

send command

provides command to

log command

add to queue

Figure 3.2.4.25-1. Hex Command Validation: Success Event Trace

 3-100 305-CD-045-001

3.2.4.26 Hex Command Validation: Fail Due to Cancel Critical Scenario

3.2.4.26.1 Hex Command Validation: Fail Due to Cancel Critical Abstract

The purpose of the "Hex Command Validation: Fail Due to Cancel Critical" scenario is to describe
the process by a hex command is not uplinked when the user indicates cancel to the critical prompt.

Figure 3.2.4.26-1 is the event trace diagram which corresponds to this scenario.

3.2.4.26.2 Hex Command Validation: Fail Due to Cancel Critical Summary Information

Interfaces:

Resource Manager Interface

Data Management Subsystem

Stimulus:

A hex formatted command is forwarded by FOS User Interface to the Command
Subsystem.

Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

None.

Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.26.3 Scenario Description

FoGnCmdFuiIF provides to FcCdCmdController a real-time command, in hex format; i.e., already
in 1553-b format.

FcCdCmdController compares the ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserId and myWksId, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

A FcCdHexCmd object is created, and its CheckCritical operation is invoked. A critical prompt is
issued to the authorized user to respond allow or cancel. As this is an asynchronous
communication, FcCdHexCmd returns control to the FcCdCmdController, which resumes polling
for all possible messages. FcCdCmdController then receives a FUI message indicating the user's
response. It passes this response to FcCdHexCmd by invoking its ProcessCriticalRsp operation.
The user's response is to cancel. The FcCdHexCmd log message via FdEvEventLogger , sends an
ack to FUI and returns control to FcCdCmdController.

 3-101 305-C
D

-045-001

FoGnCmdFuiProxy FoGnCmdFuiIF FcCdCmdController FcCdHexCmd FdEvEventLogger

sends cmd directive

user authorized
successful

creates

invokes check
critical function

log event

prompts for critical command permission

returns prompt for
permission status

send CANCEL resp.

provides resp.

process critical
response

log error message

ack done

return unsuccessful
status

Figure 3.2.4.26-1. Hex Command Validation: Failure Event Trace

 3-102 305-CD-045-001

3.2.4.27 FcCdCmdController State Diagram

Once initialized, the controller object enters a superstate called "SuperWait" in the diagram. From
this state, it can process messages from other subsystems and from the Command Uplink process.
Messages received from RMS, TLM, and CMD:Uplink; ground telemetry queries from FUI, and
time-outs (rel. B) are processed and then the controller returns to SuperWait, returning to its
previous state. Commands, operator prompt responses, and load requests (rel. B) from FUI cause
a change of state within or upon return to SuperWait.

In the diagram, processing which does not affect the SuperWait substate is shown at the bottom of
the diagram. Processing of messages which do affect the substate are shown within, above, and to
the right of the SuperWait box. Processing of commands begins with "receive command" and
continues toward the right. As can be seen, during command processing while possible prompt
responses are being waited upon, the controller returns to a wait state and other messages can be
processed.

Some things were omitted from the diagram for the sake of simplicity. If an invalid directive is
received from FUI (e.g., if a command is received while the controller is in "wait for critical prompt
response" state), an error is logged, the directive is ignored, and the state does not change. If
prerequisite checking is turned off, the "validate command" state will either transition to "wait for
critical prompt" response or to "build and send command", depending on whether the command is
critical. Activities within states are generally not listed; state names should be self-explanatory
within the context of the rest of the subsystem documentation.

The exit state is reached when a Shutdown directive is received from the RMS.

 3-103 305-C
D

-045-001

Super Wait

wait wait for
prereq

override

wait for
critical prompt

response

validate
command/

load

process
override prompt

response

process
critical prompt

response

process
RMS message

process
TLM message

process
FopCommand

message

check for
timeouts

build and send
command or send

1st load packet,
put on queue if
needs tlm verify

init

check prereq
parameters

if any

wait for
Fop Accept

send load
packet

process
partition
responsewait for

partition
response

abort

startup

inititialized

time
to

check done

receive

done
receive

done
receive

done

receive
response

override
[critical]receive

command/
load

invalid

no override

cancel

receive
response

cancel

allow

fail

fail prerequisit
check

override
[not critical]

valid
[realtime or load]

pass[critical] pass[not critical]

Shutdown
message

accepted by Fop
[incomplete load]

sent
valid stored,

if verify/enqueue

accepted by Fop
[command or

completed load]

done
[realtime or load]

[if load not
in sequence]

receive response

cancel

allow

Figure 3.2.4.27-1. FcCdCmdController state diagram

 3-104 305-CD-045-001

3.2.4.28 FcCdRtCmd State Diagram Description

During its creation by the FcCdCmdController, the FcCdRtCmd attributes are initialized. The
FcCdRtCmd object then enters the waiting mode. Upon receiving the validate command from the
FcCdCmdController, it will perform submnemonics validation. If any submnemonic is not
validated, it will return a Fail status to the FcCdCmdController. If all submnemonics are validated,
it then enters the CheckPrerequisite state. There are two scenarios in this state. First, if there is
no prerequisite check required or the check is successful, it then moves on to the CheckCritical
state. In the second scenario, the prerequisite check is unsuccessful; the FcCdRtCmd then prompts
for override and enters the Wait-for-Override-Response state. Upon receiving the response
(asynchronously), it enters the CheckCritical state if the response is to ALLOW; otherwise, it
returns fail status and exits.

Inside the CheckCritical state, if the command is not critical, the FcCdRtCmd object returns
validation success status and then enters the Wait-for-Build-Command state. If the command is
critical, it prompts for critical permission and enters the Wait-for-Permission state. Upon receiving
the response (asynchronously), if the response is to ALLOW, it enters the Wait-for-Build-
Command state; otherwise, it returns fail status and exits.

In the Wait-for-Build-Command state, upon receiving the Build command from the
FcCdCmdController, the FcCdRtCmd object constructs the binary command in the 1553-B format
and then sends this binary command to the uplink process. It returns the status and exits.

3.2.4.29 FcCdLoadCmd State Diagram Description

After being instantiated by the Command Controller, the FcCdLoadCmd object enters the wait for
validation state. Upon receiving validation request from the controller, the FcCdLoadCmd object
enters the Validation state, where it performs the following:

It instantiates an FcCdLoadData object;

It invokes the Init() function of the FcCdLoadData object to read in the header file and the
load data;

It invokes the ValidateLoadParameters() of the FcCdLoadData to validate the spacecraftId,
the destination and time window for the current load;

If the validation is unsuccessful, the FcCdLoadCmd returns Unsuccessful status then exits.
Otherwise, it checks for load criticality. If the load is critical, it prompts for critical response,
returns control to the command controller and enters the Wait For Critical Response state. If the
load is not critical, it returns successful validation status and enters the Wait to be Sent state.

Inside the Wait for Critical Response state, upon receiving the ALLOW response, it returns
Success status to the controller and enters the Wait to be Sent state. If the response is CANCEL,
it returns Unsucessful status and exits.

In the Wait to be Sent state, upon receiving the send command from the controller, it sends out one
packet from the load, returns status to the controller. If the packet is the last one in the load, it exits;
otherwise, it goes back to the Wait to be Sent state.

 3-105 305-CD-045-001

Initialize

wait for
validate cmd

validating
submnemonic

check
Prerequisite

wait for
override
response

check
critical

wait
for

permission

wait for
build

command

Build & Send
Binary

Command

Received validate cmd

fail/prompt for override, return status

Received ALLOW response

critical/prompt, return status

Received ALLOW resp/return SUCCESS status

Received build command

Received CANCEL/
return fail status

Received CANCEL resp./
return fail status

submnemonics not validated/
return fail status

no prerequisite specified
or

pass prerequisite check

Not critical/return
Success status

initialize

submnemonics validated

return status

Figure 3.2.4.28-1. FcCdRtCmd state diagram

 3-106 305-CD-045-001

Init

Validate
Load File

Check
for

Criticality

Wait for
Critical

Permission

Wait for
Send

Command

Send Packet

Instantiated

Received validate cmd

Pass validation

Critical Load/Prompt, return status

Received ALLOW resp./
return Success status

Received Send Cmd

Sent last packet/
return status

Has more packet to send/
return status

Non-critical load/
return Success status

Received CANCEL resp./
return fail status

Load file does not exist or
Fail validation/

return Fail status

Figure 3.2.4.29-1. FcCdLoadCmd state diagram

 3-107 305-CD-045-001

3.2.5 FormatCommand Data Dictionary

FcCdCmdController

class

FcCdCmdController
This class contains all the attributes that characterize the state of the Format task. It also contains the functions which perform
the basic housekeeping of the process and coordinate the activities of the other objects.

Public Functions

EcTBoolean Init()

Run

FcCdFopFormatProxy

class FcCdFopFormatProxy

Private Data

FoGnFopAcceptMsg myAcceptMsg

sent to FormatCommand each time a command is accepted

FoGnFopReceiptMsg myReceiptMsg

sent to FormatCommand each time a command is receipt confirmed by s/c or times out

FcCdFormatRcvIf

class FcCdFormatRcvIf
receives all asynchronous messages that come in across the ipc. Because of continuing developments regarding the ipc, this
interface is still somewhat undetermined.

FcTCdStatus

enum FcTCdStatus

Enumerators

FcECdPromptingForCritPermit
FcECdPromptingForPrereqOverride
FcECdSuccessfulValidation
FcECdWrongOrder

FcGnFopAcceptMsg

class FcGnFopAcceptMsg
This message class carries a message which indicates if FopCommand process is ready for the next command.

Base Classes

public FcGnFopMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual function FoGnGenericMsg::Execute(). It calls
FcCdCmdController::ProcessFopAcceptMsg member function.

 3-108 305-CD-045-001

FcGnFopCmdMsg

class FcGnFopCmdMsg
This message class is sent to FopCommand process. It contains a real time command in 1553B format.

Base Classes

public FcGnFopDataMsg

Public Functions

EcTVoid Execute()

This operation knows how to invoke ProcessNewCmd function of FopCommand process.

Private Data

EcTBoolean myBcFlag

This attribute identifies if the current command is a CCSDS control command.

FcGnFopDataMsg

class FcGnFopDataMsg
This message class is the base class for FcGnFopCmdMsg and FcGnFopPacketMsg.

Base Classes

public FcGnFopMsg

Private Data

EcTUChar* myData

This attribute identifies the binary command data.

EcTInt myDataLength

This attribute identifies the length of the command data.

FcGnFopMsg

class FcGnFopMsg
abstract class that represents all messages passed from FormatCommand to FopCommand and vice-versa

Base Classes

public FoGnGenericMsg

Private Data

EcTInt mySeqNum

used as method of making each command unique for reference

FcGnFopPacketMsg

class FcGnFopPacketMsg
This message class is sent to FopCommand process. It carries a CCSDS packet.

 3-109 305-CD-045-001

Base Classes

public FcGnFopDataMsg

Public Functions

EcTVoid Execute()

This operation knows how to invoke ProcessNewPacket function of FopCommand process.

Private Data

FcTCdLoadStage myLoadStage

This attribute identifies the memory load stage. i.e. first or last partitin etc.

FcGnFopReceiptMsg

class FcGnFopReceiptMsg
This message class carries a message which indicates if a command is CLCW verified.

Base Classes

public FcGnFopMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual function FoGnGenericMsg::Execute(). It calls
FcCdCmdController::ProcessFopReceiptMsg member function.

Private Data

EcTBoolean mySuccess

This attribute identifies if the command is cuccessfully CLCW verified.

FoGnCmdFuiIf

class FoGnCmdFuiIf

Public Functions

EcTVoid Error(EcTInt)

This operation sends FUI a FoUiStatus message that an error occured concerning this command

EcTVoid GoAhead(EcTInt)

This operation sends FUI a FoUiStatus message that it can send another command

EcTVoid Init()

Critical This operation sends FUI a FoUiStatus message that this command needs a critical prompt

EcTVoid PartitionOrder(EcTInt seqNum)

ReceiptVerifyPass This operation sends FUI a FoUiStatus message that this command was received by the S/C

EcTVoid PrereqFail(EcTInt)

This operation sends FUI a FoUiStatus message that this command failed prereq check and FormatCommand is awaiting
an override or cancel

EcTVoid PrereqPass(EcTInt)

This operation sends FUI a FoUiStatus message that this command passed prereq check

EcTVoid PutResponse(RWCString string)

records a message to be displayed by Fui accompanying the next status sent

 3-110 305-CD-045-001

EcTVoid ReceiptVerifyFail(EcTInt)

TlmVerifyPass This operation sends FUI a FoUiStatus message that this command has been executed on board the S/C

EcTVoid TlmVerifyFail(EcTInt)

This operation sends FUI a FoUiStatus message that this command failed to execute

EcTVoid TlmVerifyNone(EcTInt)

This operation sends FUI a FoUiStatus message that this command has no tlm verify parameters

FoGnFormatRmsIf

class FoGnFormatRmsIf

Public Functions

EcTBoolean SendReceipt()

sends a FoGnRmsReceiptMsg to RMS:String Manager task

Private Data

FoGnRmsReceiptMsg myReceiptMsg

FoGnFormatTlmIf

class FoGnFormatTlmIf

Public Functions

EcTVoid Init(ipc info)

PrepareForDump sends TLM subsystem a message notifying it of an imminent dump

FoGnFuiAbortLoadMsg

class FoGnFuiAbortLoadMsg
This message class carries a abort load message to the FormatCommand process.

Base Classes

public FoGnFuiMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual FoGnGenericMsg::Execute(), calling FcCdCmdController::ProcessLoadAbort
function.

FoGnFuiCmdProxy

class FoGnFuiCmdProxy

FoGnFuiCriticalRspMsg

class FoGnFuiCriticalRspMsg
this message class carries a response to a critical prompt to the FormatCommand process

 3-111 305-CD-045-001

Base Classes

public FoGnFuiMsg

Public Functions

EcTVoid Execute()

this operation overrides the virtual FoGnGenericMsg::Execute(), calling FcCdCmdController::ProcessCriticalRsp().

Private Data

FcTCdCriticalRsp myResponse

This attribute identifies the response.

FoGnFuiLoadMsg

class FoGnFuiLoadMsg
This message class carries a process Load message to FormatCommand process.

Base Classes

public FoGnFuiMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual FoGnGenericMsg::Execute(), calling FcCdCmdController::ProcessLoadRequest
function.

Private Data

RWCString myName

This attribute identifies the load name.

FcTCdLoadType myType

This attribute identifies the load type.

FoGnFuiMsg

class FoGnFuiMsg
this abstract class represents all messages passed from FoGnFuiCmdProxy to FcCdRcvIf

Base Classes

public FoGnGenericMsg

Private Data

EcTInt mySeqNum

used to give each issued command a unique number

EcTInt myUserId

gives the used id of the user sending the message

EcTInt myWksId

gives the workstation id of the console the command is sent from

 3-112 305-CD-045-001

FoGnFuiPartRspMsg

class FoGnFuiPartRspMsg
This message class carries a response to a prompt for a out of sequence load.

Base Classes

public FoGnFuiMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual function FoGnGenericMsg::Execute(). It calls
FcCdCmdController::ProcessPartitionRsp member function.

Private Data

FcTCdRsp myResponse

This attribute identifies the response.

FoGnFuiPrereqRspMsg

class FoGnFuiPrereqRspMsg
This message class carries a response to a prerequisite check prompt to the FormatCommand process.

Base Classes

public FoGnFuiMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual FoGnGenericMsg::Execute(), calling FcCdCmdController::ProcessPrereqRsp().

Private Data

FcTCdRsp myResponse

This attribute identifies the response.

FoGnFuiStoredCmdMsg

class FoGnFuiStoredCmdMsg
This message class carries a stored command to FormatCommand process.

Base Classes

public FoGnFuiMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual function FoGnGeneric::Execute(). It calls
FcCdCmdController::ProcessStoredCommand member function.

Private Data

FcTCdSource mySource

This attribute identifies the stored command source.

RWCString myString

This attribute identifies the stored command string.

 3-113 305-CD-045-001

FoGnGenericMsg

class FoGnGenericMsg
abstract class represents all messages sent to FormatCommand or sent by FormatCommand to FopCommand. These messages
know how to execute themselves.

Base Classes

public RWCollectable

Public Functions

virtual EcTVoid Execute(void)

is overridden in each concrete class so that each message knows what operation in FcCdCmdController to call in order to
process itself

FoGnRmsFormatInitMsg

class FoGnRmsFormatInitMsg
message is sent from RMS to FormatCommand during initialization to set configuration attributes.

Public Functions

EcTVoid Execute(void)

Private Data

EcTInt myDbId

initializes value

FoTGnAddress myFopAddr

initializes value

FoTGnAddress myFuiAddr

initializes value

FcTCdOperationMode myOperationMode

initializes value

FoTGnAddress myParamServerAddr

initializes value

FcTCdPrimaryMode myPrimaryMode

initializes value

EcTInt myScId

initializes value

FoTGnAddress myTlmAddr

initializes value

FoGnRmsFormatPrimaryModeMsg

class FoGnRmsFormatPrimaryModeMsg
This message class carries a "set mode" request to FormatCommand process.

 3-114 305-CD-045-001

Base Classes

public FoGnRmsMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual function FoGnGenericMsg::Execute(). It calls FcCdCmdController::SetMode
member function.

FcTCdPrimaryMode GetPrimaryMode()

This operation returns the mode of the current string to the caller.

EcTVoid SetPrimaryMode(FcTCdPrimaryMode)

This operation sets the mode of the current string.

Private Data

FcTCdPrimaryMode myPrimaryMode

This attribute identifies the mode of current string.

FoGnRmsFormatProxy

class FoGnRmsFormatProxy

FoGnRmsFormatShutdownMsg

class FoGnRmsFormatShutdownMsg
This message class carries a shutdown request to FormatCommand process.

Base Classes

public FoGnRmsMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual FoGnGenericMsg::Execute(), calling FcCdCmdController::Shutdown function.

FoGnRmsMsg

class FoGnRmsMsg
abstract class represents all messages sent from FoGnRmsFormatProxy to FcCdRcvIf

Base Classes

public FoGnGenericMsg

FoGnRmsSaveFormatSnapshotMsg

class FoGnRmsSaveFormatSnapshotMsg
This message class carries RMS request "Save snap shot" to FormatCommand process.

 3-115 305-CD-045-001

Base Classes

public FoGnRmsMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual FoGnGenericMsg::Execute() function. It calls FcCdCmdController::SaveSnapshot
function.

EcTVoid FoGnRmsSaveSnapshotMsg()

This is the default constructor.

Private Data

RWCString myFileName

This attribute identifies my snap shot file name.

FoGnRmsSetCmdAuthUserMsg

class FoGnRmsSetCmdAuthUserMsg
This message class carries a "Set command authorized user" request to FormatCommand process.

Base Classes

public FoGnRmsMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual function FoGnGenericMsg::Execute(). It calls
FcCdCmdController::UpdateCmdAuthUser function.

Private Data

EcTInt myUserId

This attribute identifies the user id.

EcTInt myWksId

This attributes identifies the work station id.

FoGnRmsSetPrereqCheckMsg

class FoGnRmsSetPrereqCheckMsg
This message class carries RMS request "set prerequisite check state" to FormatCommand process.

Base Classes

public FoGnRmsMsg

Public Functions

EcTVoid Execute()

This operation overrides the virtual FoGnGenericMsg::Execute(), calling FcCdCmdController::SetPrereqCheckState
function.

Private Data

FcTCdPrereqCheckState myPrereqCheckState

This attribute identifies the new prerequisite check state.

 3-116 305-CD-045-001

FoGnTlmDumpMsg

class FoGnTlmDumpMsg

Base Classes

public FoGnTlmMsg

Private Data

EcTBoolean myAbsoluteFlag

indicates if the dump is an absolute dump

EcTInt myAddress

indicated the address of the beginning of the dump

EcTInt mySegOffset

indicates the segment offset of the dump

EcTInt myTableId

indicates the table ID of the table being dumped

EcTInt myWordLength

indicates the length of the dump in words

FoGnTlmMsg

class FoGnTlmMsg
abstract class represents all the messages sent from FoGnFormatTlmIf to FoGnTlmDumpProxy

Base Classes

public RWCollectable

FoUiStatus

class FoUiStatus
message passed from FormatCommand to FUI giving status of a directive

Private Data

EcTInt mySeqNum

provides a unique identifier for each directive

FoTUiStatus myStatus

provides the status of the directive

RWCString myText

provides text which may be displayed to the user to accompany the status.

FcCdBaseCmd

class FcCdBaseCmd
This is the base class for all command type: real-time, hex/binary, stored or load.

Public Construction

FcCdBaseCmd(void)

This member function is the default constructor.

 3-117 305-CD-045-001

~FcCdBaseCmd(void)

This member function is the destructor.

Public Functions

virtual EcTBoolean CheckCritical(void)

This member function is a virtual function.

virtual EcTInt ProcessCriticalRsp(FoGnFuiCriticalRspMsg* msg)

This member function is a virtual function.

virtual EcTBoolean Validate(void)

This member function is a virtual function.

virtual EcTBoolean VerifyTlm(Struct_Pid* TlmMsg)

This member function is a virtual function.

Private Data

static FoGnCmdCmsProxy* myCmsProxy

This member variable points to Cms proxy.

static FoDsFile* myDsFile

This member variable points to the FoDsFile proxy

static FdEvEventLogger* myEventLogger

This member variable points to FdEvEventLogger proxy.

static FoGnCmdFopProxy* myFopProxy

This member variable points to the FopCommand proxy.

EcTInt myFuiCId

myFuiCid

This member variable contains the Fui Cmd Id.

enum myFuiCmdType

static FoGnCmdFuiProxy* myFuiProxy

This member variable points to Fui Proxy.

static FoGnCmdTlmProxy* myTlmProxy

This member variable points to Tlm proxy.

Private Types

enum

This member variable contains the command type.

Enumerators

CAC
script
stored

FcCdCmd

class FcCdCmd
A base class representing either a real-time command or a stored command.

 3-118 305-CD-045-001

Public Construction

FcCdCmd(command_struct* cmd_str)

object constructor.

~FcCdCmd(void)

object destructor.

Public Functions

EcTVoid SetTime()

RecordTime

This member function set myEnqueueTime to current time.

virtual EcTBoolean TimeOut()

This member function is a virtual function

EcTBoolean VerifyTlm(Struct_Pid* TlmMsg)

This member function is used for telemetry verification

Private Data

EcTInt myCmdLen

the length of the command, in words.

enum myCmdType

EcTBoolean myCritical

This is a Boolean that indicates whether or not the operator is to be prompted prior to processing the command. If
prompting is required, the operator must respond positively before the command is processed; a negative response will
prevent uplink of the command.

structure myDescriptor

This attribute is information about the command, such as command type and data length.

structure myDestination

This attribute is information pertaining to the routing of a command once on board the spacecraft, i.e., the instrument of
the subsystem to which the command is directed.

set myExpectedTlmValue

This attribute is a set of expected values for the telemetry parameters in myTlmVerifyPid set to determine command
execution verification. There is one pair of high/low values for each (1 to 4) of myTlmVerifyPid.

RWCString myMnemonic

This is the command id corresponding to the mnemonic command, as referenced from within the FUI Subsystem.

EcTInt myNumFixedDataRec

This attribute identifies number of fixed data records in the database file.

EcTInt myNumPrereq

This attributes identifies number of prerequisite records in the database file.

EcTInt myNumVarDataRec

This attribute identifies the number of variable data records in the database file.

enumerated mySubSystem

This attribute idnetifies the name of subsystem to which the command is directed.

EcTInt myTlmVerifyPid

This is telemetry parameter used to verify the command using telemetry.

 3-119 305-CD-045-001

EcTReal myVerifyWaitInterval

This is the amount of time, in miliseconds, to wait before declaring a command as having failed verification.

array of

This is a record containing information for prerequisite checking: telemetry PID, prerequisite type (raw or converted), and
the upper / lower limit values to define the range of accepted values for the prerequisite check.

array of

This attribute identifies a set of command fixed data record (if existed).

Private Types

enum

command type (e.g. BDU Relay Drive/Logic/Serial/No-op)

Enumerators

Bdu
CCSDSBc
CtiuLoad
Dump
Logic
NOOP
Relay
SCCLoad
Serial

FcCdCmdDef

class FcCdCmdDef
This class contains all information related to a command.

Public Construction

FcCdCmdDef(command_struct* cmd_str)

This member function is the default constructor.

~FcCdCmdDef()

This member function is the destructor.

Public Functions

EcTVoid GetCmRecord(command_struct* cmd_str)

GetCmdRecord

This member function returns all attributes of this object.

EcTInt hash()

This member function returns hash number for this object. The hash number is used to insert the object into RWSet.

RWBoolean isEqual(const RWCollectable* cmd)

This member function defines the meaning of equivalence for two objects of this class.

EcTVoid restoreGuts(RWvistream& strm)

This member function restores an object from a "flat" definition.

EcTVoid saveGuts(RWvistream& strm)

This member function saves an object to a stream so that it can be restored late by restoreGuts function.

 3-120 305-CD-045-001

Private Data

EcTInt myCmdLen

This member variable contains the length of the command in words.

enumerated myCmdType

This member variable contains the command type (Relay,Logic,Serial,NOOP, CtiuLoad, SCCLoad, CCSDSBc, Dump)

EcTBoolean myCritical

This member variable is a Boolean flag that indicates whether or not the operator is to be prompted prior to processing the
command. If prompting is required, the operator must respond positively before the command is processed; a negative
response will prevent uplink of the command.

set myExpectedTlmValue

This attribute identifies a set of expected values for the telemetry parameters in myTlmVerifyPid set to determine
command execution verification. There is one pair of high/low values for each (1 to 4) of myTlmVerifyPid.

RWCString myMnemonic

This attribute identifies the number of fixed data records in the database file.

EcTInt myNumPrereq

This attribute identifies the number of prerequisite records in the database file.

EcTInt myNumVarDataRec

This attribute identifies the number of variable data records in the database file.

enumerated mySubSystem

This attribute identifies the name of subsystem to which the command is directed.

set myTlmVerifyPid

This attribute is a set (1 to 4) of telemetry parameters used to verify the command using telemetry.

EcTReal myVerifyWaitInterval

This attribute identifies the amount of time, in miliseconds, to wait before declaring a command as having failed
verification.

array of

array of

This attribute a record containing information for prerequisite checking: telemetry PID, prerequisite type (raw or
converted), and the upper / lower limit values to define the range of accepted values for the prerequisite check.

array of

This attribute identifies a set of command fixed data record (if existed).

FcCdCommandDatabase

class FcCdCommandDatabase
This class provides database information needed for all aspects of command processing, such as validation, building and
verifcation. This class is derived from Rogue Wave RWSet class.

Public Construction

FcCdCommandDatabase()

This member function is the default constructor.

~FcCdCommandDatabase()

This member function is the destructor.

 3-121 305-CD-045-001

Public Functions

EcTInt GetCmdDefinition(command_struct* cmd_str)

This member function gets the information necessary to build a command, returns all information in the database related
to the given command mnemonic.

EcTBoolean Init(FoDsFile, DatabaseId)

This member function loads information from the database into the hash table.

EcTVoid restoreGuts(RWvistream& strm)

saveGuts

This member function is a Rogue Wave function; it stores an object into a file so that the object can be later restored using
restoreGuts.

EcTVoid restoreGuts(RWvistream& strm)

This member function is a Rogue Wave function; it restores an object from a "flat" definition.

FcCdHexCmd

class FcCdHexCmd
This class is used for hex/binary command in 1553-b format.

Public Construction

FcCdHexCmd(void)

This member function is the default constructor.

~FcCdHexCmd(void)

This member function is the destructor.

Public Functions

EcTBoolean ProcessCriticalRsp(FoGnFuiCriticalRspMsg* FuiRspMsg)

This member function handles the response to critical prompt

EcTBoolean SendCmd(void)

This member function sends the hex cmd to FopCommand

Private Data

RWCString* myBinaryCmd

This member variable contains the hex command.

FcCdLoadCmd

class FcCdLoadCmd
This class is used for all load command.

Base Classes

public FcCdRtCmd

Public Construction

FcCdLoadCmd(RWCString* spacecraftId, RWCString* LoadId)

This member function is the constructor.

~FcCdLoadCmd(void)

This member function is the destructor.

 3-122 305-CD-045-001

Public Functions

EcTBoolean ProcessCriticalRsp(FoGnFuiCriticalRspMsg* FuiMsg)

This member function is used to process critical response.

EcTBoolean ProcessPartitionRsp(FoGnFuiPartRspMsg* FuiMsg)

This member function is used to process partition response.

EcTInt SendLoad(void)

This member function is used to send a load to FopCommand process, one packet at a time.

FcTCdStatus Validate(FoUiInstruction* FuiMsg)

This member function is used to validate a load; such item such as spacecraftId and time window will be validated.

EcTBoolean VerifyTlm(Struct_Pid* TlmMsg)

This member function is used for telemetry verification of a load.

Private Data

RWCString* myCRC

This member variable contains the CRC of the load.

FcCdLoadData* myLoadData

This member variable points to the load data (e.g. packets).

RWCString* myLoadId

This member variable contains the Load Id.

RWCString* mySpacecraftId

This member variable contains the spacecraft ID.

FcCdLoadData

class FcCdLoadData
class FcCdLoadData; This class contains the file header and data for a load.

Public Construction

FcCdLoadData(myLoadId, myDsFile, myEventLogger, myFopProxy, myFuiProxy)

This member function is the constructor.

~FcCdLoadData(void)

This member function is the destructor.

Public Functions

EcTVoid GetLoadParameters(RWCString* CRC, EcTBoolean* Critical, EcTInt*
TlmPid, EcTInt* WaitInterval)

This member function returns important attributes concerning the load: CRC, critical flag, TlmPid and
VerifyWaitInterval.

EcTBoolean Init(void)

This member function is used to read load data and header.

EcTInt SendPacket(void)

This member function sends one packet out to FopCommand process.

EcTBoolean ValidateLoadParameters(RWCString* SpacecraftId)

This member function validates parameters of a load (spacecraftId and time window)

 3-123 305-CD-045-001

Private Data

RWCString* myCRC

This member variable contains the CRC of a load.

EcTBoolean myCritical

This member variable indicates the criticality of the load.

EcTInt myCurrentPacket

This member variable contains the number of the packets that have been sent out.

RWCString* myData

This member variable contains the load packets.

RWCString* myDestination

This member variable contains the destination for the load.

FoDsFile* myDsFile

This member variable points to the FoDsFile proxy.

FdEvEventLogger* myEventLogger

This member variable points to FdEvEventLogger proxy.

FoGnCmdFopProxy* myFopProxy

This member variable points to the FopCommand proxy.

EcTInt myFuiCid

This member variable contains the Fui command Id.

enum myFuiCmdType

FoGnCmdFuiProxy* myFuiProxy

This member variable points to the Fui Proxy.

EcTInt myLoadDataIndex

This member variable contains the "mark" for the start of the next packet in the load.

RWCString* myLoadId

This member variable contains the Load Id.

RWCString* mySpacecraftId

This member variable contains the spacecraft id.

EcTInt myTlmPid

This member variable contains the load Tlm Pid.

EcTInt myTotalPacket

This member variable contains the total number of packets in the partition.

EcTInt myWaitInterval

This member varable contains the relative time window for load tlm verified.

time* myWindow

This member variable contains the time window for the load to be uplinked

Private Types

enum

This member variable contains the Fui Command Type.

 3-124 305-CD-045-001

Enumerators

CAC
script
stored

FcCdRtCmd

class FcCdRtCmd
(type of FcCdCmd) A derived class representing a real-time command that has been issued.

Base Classes

public FcCdCmd

Public Construction

FcCdRtCmd(command_struct* cmd_str)

This is the object constructor.

~FcCdRtCmd()

This is the object destructor.

Public Functions

EcTBoolean Build(FopProxy, FdEvEventLogger, FuiProxy)

This function formats the command into spacecraft command format using the BinaryCmd.

EcTBooleam CheckCritical(FuiProxy)

This member function checks myCritical value and, if true, prompts the user for an allow/cancel response.

EcTBoolean CheckPrereq(TlmProxy, FdEvEventLogger)

This member function checks the Prerequisite telemetry point(s), if any, unless myPrerequisiteStatus is disabled.
CheckTlmValue is used to compare the actual telemetry values against their prerequisite values. If the return status
indicates failure, the user is prompted for an override/ cancel response.

EcTInt ProcessCriticalRsp(FdEvEventLogger, FuiProxy, FuiMsg)

This member function processes the response from user to earlier prompt for critical command permission.

EcTInt ProcessPrereqRsp(FdEvEventLogger, FuiProxy, FuiMsg)

This member function processes the response from user to earlier prompt for prerequisite override.

EcTBoolean SendCmd(FopProxy)

This member function forwards the commands and directives to FcCmCCSDSFop. The command is in 1553-B (AM-1
real-time) format.

EcTInt Validate(PrereqFlag, FuiProxy, TlmProxy, FdEvEventLogger,
FuiCmdStatus)

performs the following functions: checks submnemonics for validity checks prerequisite state(s) by invoking CheckPrereq
and prompts for Prerequisite override if fail prerequisite check invokes critical prompt for critical commands by invoking
CheckCritical.

Private Data

structure myBinaryCmd

This attribute is the digital representation of the command.

structure myCmdDirective

This is a structure contains the parsed command directive.

 3-125 305-CD-045-001

EcTBoolean myPrerequisiteStatus

This attribute reflects the status of prerequisite checking.

FcCdStoredCmd

class FcCdStoredCmd
This class is used for stored commands.

Base Classes

public FcCdCmd

Public Construction

FcCdStoredCmd(void)

This member function is the default constructor.

~FcCdStoredCmd(void)

This member function is the destructor.

Public Functions

EcTBoolean TimeOut(void)

This member function returns the status of whether or not the current time is outside or inside the waiting window.

Private Data

static time myDownLinkDelay

This member variable contains the time delay for downlink.

 3-126 305-CD-045-001

3.3 FopCommand Description
The Command Fop process is responsible for taking commands built by the FormatCommand
process, wrapping them in the appropriate header and footer information, and sending them to the
TransmitCommand process to be sent to the satellite via EDOS. The Fop process must also accept
a small number of directives from RMS, as well as process Command Link Control Words or
CLCWs received from the satellite through EDOS which keeps it up to date on which commands
have been received onboard.

3.3.1 FopCommand Context Description

The FopCommand process receives formatted commands and memory loads from the
FormatCommand process, puts the appropriate wrappers on them according to CCSDS standard
and builds CLTUs. FopCommand process then sends the formatted data on to the
TransmitCommand process as CLTUs. The receipt status of a uplinked command will be reviewed
by a down linked CLCW forwarded to FopCommand by EDOS. When the receipt of one of these
is confirmed by the spacecraft, FopCommand sends a command receipt to the FormatCommand
process. The Resource Management Subsystem (RMS) sends config info, reconfig requests and
snapshot request to FopCommand, and receives status messages from it. The config info includes
the spacecraft ID, the database ID, the state of the current string (i.e. backup or primary), the mode
of current string (i.e. real-time or simulation), the address of parameter server, the address of
FormatCommand process and the address of TransmitCommand process. FopCommand process
also sends ground telemetry updates to Parameter Server when ever a ground telemetry is changed
either by a RMS directive or a CLCW. The ground telemetry parameter set may include the
following parameters: the current state of the Fop protocol, the wait flag of the current CLCW, the
Lockout flag of the current CLCW, the retransmit flag of the current CLCW, the current frame
sequence number (V(S)), the next expected acknowledgment frame sequence number (NN(R)), the
current timer initial value (T1_Initial), the transmission limit, the current transmission count and
the Fop Sliding Window width etc. The FOS Data Management Subsystem (DMS) is used to save
and retrieve a file containing config info, and to log events.

 3-127 305-C
D

-045-001

FopCommand

TransmitCommand
process

FOS
Data

Management
Subsystem

FOS
Resource

Management
Subsystem

FormatCommand
process

EDOS

Parameter
Server

Config Info,
Reconfig request
Snapshot request

Events

Formatted
Commands,

Memory
Loads

Command
Receipts

status

Config
Info

status
CLTUs

CLCWs

Ground
Telemetry

CLCWs

Config
Info

This System

Figure 3.3.1-1. FopCommand Context Diagram

 3-128 305-CD-045-001

3.3.2 FopCommand Interfaces
Table 3.3.2. FopCommand Interfaces

Interface
Service

Interface
Class

Interface
Class

Description

Service
Provider

Service
User

Frequency

Recieve
CLCWs from
EDOS

FoGnCmd
Ground
StationIF

Recieve binary
telemetry from
EDOS

CMD:
Fop

CMD:
Fop

once per
second

Send CLTUs FoGn
CmdFop
Transmit
Proxy

Sends CLTUs
to the Transmit
Command
process

CMD:
Transmit

CMD:
Fop

once per
command

FcGnTcCltu Message class
for a CLTU

Send ack-
nowledge-
ments

FoGnFop
Format
Proxy

Sends
acknow-
ledgments to
the Format
Command
process

CMD:
Format

CMD:
Fop

twice per
command

Receive
commands
and directives

FoGnCmd
FopFormat
IF

Receives
Cmds &
directives
from
FormatComm
and process

CMD:
Fop

CMD:
Format

once per
command

Provide
Configur-
ation
Info

FoGnCmd
Fop
RmsIF

Receive
directives
(other than
commands)

CMD:
Fop

RMS:
String
Manager

> 2 x 5 per
pass, or
< 280 / day

Provides
access to
data values

FoGn
Parameter
Server

Distribution of
updated
values to other
processes

Parameter
Server

CMD:
Fop

> 2 x 5 per
pass, or
< 280 / day

Event
Logging

FdEvEvent
Logger

Provides
routing and
archiving of
events
messages

DMS:
FdEvEvent
Archiver

CMD:
Fop

Once per
command

 3-129 305-CD-045-001

3.3.3 FopCommand Object Model Description

The FopCommand process is an implementation of CCSDS Frame Operation Procedure (FOP)
protocol. Together with on board Frame Acceptance and Reporting Mechanism (FARM), it
ensures type-A frames to be accepted by the spacecraft only if they are in strict sequential order.
It utilizes sequential (" go-back-n") retransmission techniques to correct Telecommand Frames that
were rejected by the spacecraft because of error. This process accepts commands (in 1553B
format) or memory load packets (in CCSDS packet format) from FormatCommand process, builds
them into CCSDS transfer frame format and sends them to TransmitCommand process. The
FopCommand process must also accept directives from other processes, as well as process CLCWs
from the satellite which keep it up to date on what commands have been accepted onboard.

FcCmCcsdsFop class is the controller of the process. It establishes connections with other
subsystems and command processes when initialized. It then waits on system interfaces for inputs
from other subsystems and command processes. When an input arrives, FcCmCcsdsFop class asks
the corresponding interface class to handle input message. The interface class returns an instance
of FoFopRequest. Because the Execute operation of FoFopRequest class is polymorphic, each
instance of class derived from FoFopRequest knows which operations of FcCmFopState class need
to be invoked to correctly process the specific request. FcCmCcsdsFop then delegates the request
to the current active FcCmFopState. A request is processed differently depending on the current
active state of the Fop protocol.

FcCmFopState represents the state of Fop protocol. It has six derived classes with each of them
represents a different operational Fop state. FcCmFopState class declares an interface common to
all of its six subclasses. It also defines all the common behavior of the subsequent derived states.
A FcCmFopState object can be in one of six different states: FcCmFopActive, FcCmFopInitial,
FcCmInitializeWithBc, FcCmFopInitializeWithoutBc, FcCmFopRxmitWithWait, and
FcCmFopRxmitWithoutWait. When FcCmFopState receives a request from FcCmCcsdsFop, it
responds differently depending on its current state. For example, the effect of an uplink a new
command request depends on whether the FcCmFopState is in its active or initial state.

FcCmFopInitial is a subclass of FcCmFopState. It implements Fop initial state specific behavior.

FcCmFopActive is a subclass of FcCmFopState. It implements Fop active state specific behavior.

FcCmFopInitializeWithoutBc is a subclass of FcCmFopState. It implements Fop "Initializing
without BC Frame" state specific behavior.

FcCmFopInitializeWithBc is a subclass of FcCmFopState. It implements Fop "Initializing with
BC Frame" state specific behavior.

FcCmFopRmitWithWait is a subclass of FcCmFopState. It implements Fop "Retransmit with
Wait" state specific behavior.

FcCmFopRmitWithoutWait is a subclass of FcCmFopState. It implements Fop "Retransmit
without Wait" state specific behavior.

FoPsClientIF is the proxy class for parameter server. FopCommand process uses this class to send
parameter updates to parameter server.

FoGnCmdFopTransmitProxy is a proxy class provided by TransmitCommand process. It is used
by FopCommand process to send CLTUs to TransmitCommand process.

 3-130 305-CD-045-001

FcCdFopFormatProxy is a proxy class provided by FormatCommand process. It is used by
FopCommand process to send acceptance and uplink status to FormatCommand process.

FoGnCmdFopFormatIF is the interface class, from which FopCommand process receives
command data from FormatCommand process.

FoGnCmdFopRmsIF is the class from which FopCommand process receives RMS directives.

FoGnCmdFopRmsProxy is the proxy class that FopCommand process provided for RMS
subsystem. This class resides in RMS subsystem and is used by RMS to send directives to
FopCommand process.

FoGnCmdFopGroundStationIF is the class from which FopCommand process receives CLCW
from EDOS.

FoFopRequest is an abstract class. It is the base class for all request objects. When the first input
arrives, the corresponding interface interprets the input and creates an instance of a specific request
object. At instantiation time, the request object is given the visibility to the FcCmCcsdsFop class,
therefor it knows how to invoke the corresponding operation of FcCmCcsdsFop. FcCmRequest has
an abstract Execute operation. This allows all request to be executed the same way without having
to identify the request.

FoGnRmsReq is a type of FoFopRequest. It defines a common interface for all request from RMS.

FoGnStartAdWithoutClcwReq is a type of FoGnRmsReq. It defines a binding between RMS'
"Start AD service without CLCW check" request and StartAdWithoutClcw function of
FcCmCcsdsFop class.

FoGnStartAdWithClcwCheckReq is a type of FoGnRmsReq. It defines a binding between RMS's
"Start AD service with a CLCW check" request and the StartAdWithClcwChek function of
FcCmCcsdsFop class.

FoGnResumeAdServiceReq is a type of FoGnRmsReq. It defines a binding between RMS's
"Resume AD service" request and the ResumeAdService function of FcCmCcsdsFop class.

FoGnTerminateAdReq is a type of FoGnRmsReq. It defines a binding between RMS "Terminate
AD service" request and TerminateAdService function of FcCmCcsdsFop class.

FoGnSetVsReq is a type of FoGnRmsReq. It defines a binding between RMS's "Set ground
transmitter sequence number" request and the SetVs function of FcCmCcsdsFop class.

FoGnSetWinWidthReq is a type of FoGnRmsReq. It defines a binding between RMS's "Set Fop
sliding window width" request and the SetWinWidth function of FcCmCcsdsFop class.

FoGnSetTimeInitialValReq is a type of FoGnRmsReq. It defines a binding between RMS's "Set
timeout initial value" request and SetTimeInitialVal function of FcCmCcsdsFop class.

FoGnSetTransmissionLimitReq is a type of FoGnRmsReq. It defines a binding between RMS's
"Set transmission Limit" request and the SetTransmissionLimit function of FcCmCcsdsFop class.

FoGnSelectCtiuReq is a type of FoGnRmsReq. It defines a binding between RMS's " Select Ctiu"
request and the SelectCtiu function of FcCmCcsdsFop class.

FoGnGetConfigSnapshotReq is a type of FoGnRmsReq. It defines a binding between RMS "Get
Configuration snapshot" request and GetConfigSnapshot function of FcCmCcsdsFop class.

FoGnChangeRoleReq is a type of FoGnRmsReq. It defines a binding between RMS "change the

 3-131 305-CD-045-001

state of current string (to Primary, Backup or Inactive)" request and the ChangeRole function of
FcCmCcsdsFop class.

FoGnShutdownFopReq is a type of FoGnRmsReq. It defines a binding between RMS "shut down
Fop" request and the ShutdownFop function of FcCmCcsdsFop class.

FcGnFormatProcessReq is a type of FoFopRequest. It defines a common interface for all request
from FormatComand process.

FcGnProcessRtCmdReq is a type of FcGnFormatProcessReq. It defines a binding between a
request to uplink a real time command (in 1553B format) and the ProcessRtCmd function of
FcCmCcsdsFop class.

FcGnProcessLoadPacketReq is a type of FcGnFormatCommandReq. It defines a binding between
a request to uplink a memory load packet (in CCSDS packet format) and the ProcessLoadPacket
function of the FcCmCcsdsFop class.

FoGnProcessClcwReq is a type of FoFopRequest. This class is responsible for preliminary
processing of a CLCW. It first checks the validity of a CLCW bit pattern against the CCSDS
standard. It then decommutates the CLCW. This request also defines a binding between a CLCW
and the ProcessClcw function of FcCmCcsdsFop class.

FcCmTcFrame is responsible for building transfer frame according to the CCSDS format. When
receives a real time command (in 1553B format) or a memory load packet (in CCSDS packet
format) from FcCmCcsdsFop class, FcCmFopState first creates an instance of FcCmTcFrame
which knows how to build a CCSDS frame from a 1553B real time command or a memory load
packet. FcCmFopState then asks FcCmTcFrame class to build a CCSDS frame and also the
corresponding CLTU. Once this is done, FcCmFopState sends the CLTU to the
TransmitCommand process via its proxy where the CLTU is uplinked. Finally, FcCmFopState
saves the current instance of FcCmTcFrame in the command sent queue until the frame is receipt
verified by a CLCW. Once this command is CLCW verified, the copy of FcCmTcFrame is then
deleted from the command sent queue. FcCmFcFrame is the aggregation of FcCmTcFrameHeader,
FcCmFrameData and FcCmFrameCrc. Each part knows how to build itself on demand.

FcCmTcFrameHeader is responsible for building transfer frame header according to the CCSDS
format.

FcCmTcFrameData is responsible for building transfer frame data portion. It is the aggregation of
FcCmTcPacketHeader and FcCmTcPacketData. Each part knows how to build itself on demand.

FcCmFcFrameCrc is responsible for calculating the crc check code for the entire content of a
transfer frame.

FcCmTcPacketHeader is responsible for building the Tc Packet header according to the CCSDS
format.

FcCmTcPacketData is responsible for building the packet data portion according to the CCSDS
format.

FcGnTcCltu is the data structure to be send to TransmitCommand process. After the frame is
build, FcCmTcFrame creates an instance of FcGnTcCltu which contains the CLTU for current
transfer frame. The FcGnTcCltu object is then passed to Command Transmit process. It is then
uplinked to satellite via EDOS.

 3-132 305-C
D

-045-001

FcCmCcsdsFop

FcCmFopState

FcCmFopActive

FcCmFopRxmitWithoutWait

FcCmFopRxmitWithWait

FcCmFopInitializeWithBc

FcCmFopInitializeWithoutBc

FcCmFopInitial

FoGnCmdFopFormatIF

FcCmRequest

FoGnCmdFopRmsIF

FoGnCmdFopGroundStationIF

FcCmTcFrame

FoGnCmdFopTransmitProxy

FcGnTcCltu

FdEvEventLogger

Note:See FopCommand_Request
object model for details.

Note: See FopCommand_TcFrame
object model for details.

FoGnCmdFopTransmitProxy()
~FoGnCmdFopTransmitProxy()
SendCltu(FcGnTcCltu Cltu)

FcCdFopFormatProxy

Format task Proxy

FoPsClientIF

Transmit task Proxy

GenEvent(RWCString* msg)

myGroundStationAdd
myEventLog

InitGroundStaionIF(RWCString myGroundStationAdd)
HandleInput()

myRmsAddress
myEventLog

Init(EcTInt, EcTChar**)
SendStatus(RWCString)
HandleInput()

Execute(FcCmCcsdsFop *fop)

myListenPort
myEventLog
myFormatAddress

InitFormatIf(RWCString myFormatAddress)
HandleInput()

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)
UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

FoCmCCSDSFopProxy

ProcessLoadPacket(EcTUChar*, EcTInt, FcTCdLoadStage)
ProcessRtCmd(EcTUChar*, EcTInt, EcTBoolean)

Note: Proxy resides in FormatCommand process

FoGnCmdFopRmsProxy

Note: Proxy resides in RMS subsystem

ProcessClcw(EcTUShortInt, ... ,EcTBoolean)
ProcessRtCmd(RWCollectable myRtCmd)
ProcessLoadPacket(RWCollectable myLoadPacket)
StartAdWithClcwCheck()
StartAdWithoutClcwCheck()
ResumeAdService()
SetVs(EcTUInt myNewVs)
HandleTimeout()

ProcessClcw(EcTUShort, ... ,EcTBoolean)
ProcessRtCmd(RWCollectable myRtCmd)
ProcessLoadPacket(RWCollectable myPacket)
HandleTimeout()

ProcessClcw(EcTUShortInt, ... , EcTBoolean)
HandleTimeout()
ProcessRtCmd(RWCollectable myRtCmd)
ProcessLoadPacket(RWCollectable myPacket)

ProcessRtCmd(RWCollectable myRtCmd)
ProcessLoadPacket(RWCollectable myPacket)
ProcessClcw(EcTUShortInt, ... ,EcTBoolean)
HandleTimeout()

ProcessRtCmd(RWCollectable myRtCmd)
ProcessLoadPacket(RWCollectable myPacket)
ProcessClcw(EcTUShortInt, ... , EcTBoolean)
HandleTimeout()

ProcessRtCmd(RWCollectable myRtCmd)
ProcessLoadPacket(RWCollectable myPacket)
ProcessClcw(EcTUShortInt, EcTBoolean)
HandleTimeout()

myCltuSize
myCltu
myLoadId
myCltuType

FcGnTcCltu()
~FcGnTcCltu()
isEqual(RWCollectable* Cltu)
GetCltu(RWCString* Cltu)
SetCltu(RWCString* Cltu)
SetCltuSize(EcTUInt size)
GetCltuSize()
GetLoadId(RWCString* LoadId)
SetLoadId(RWCString* LoadId)
SetCltuType(enum CltuType)
GetCltuType()

myScId
myDbId
myRole
myMode
myArchiveState
myConfigFile
myCurState
myIfToRms
myIfToCmdFormat
myIfToGroundStation
myEventLog
myFopInEffect

Init(EcTInt argc, EcTChar **argv)
Run()
Configuration(RWCString myConfigInfo)
StartFop()
ShutdownFop()
ProcessClcw(EcTUShortInt, ... , EcTBoolen)
ProcessRtCmd(RWCollectable myRtCmd)
ProcessLoadPacket(RWCollectable myPacket)
StartAdWithoutClcwCheck()
StartAdWithClcwCheck()
ResumeAdService()
TerminateAdService()
SetVs(EcTUInt myNewVs)
SetWinWidth(EcTUInt myWinWidth)
SetTimerInitialVal(EcTULongInt myT1Initial)
SetTransmissionLimit(EcTUInt myLimit)
SetTimeoutType(EcTBoolean myTimtoutType)
SelectCtiu(EcTUInt)
GetConfigSnapshot()
ChangeRole(RoleType myRole)
ChangeState(FcCmFopState*)

myStoredLockoutFlag
mySotredWaitFlag
myStoredRetranFlag
myFrameSeqNo
myCmdWaitQue
myCmdSentQue
myCurFrame
myToBeRetranFlag
myExpectedAckSeqNo
myTimerInitialVal
myTransmitLimit
myTransmitCounter
myWinWidth
myTimeoutType
mySuspendState
myVs
myRole
myCtiu
myFop
myTransmitProxy
myFormatProxy
myPtrToRms
myEventLog
myParaServerProxy

Init(FcCmCcsdsFop*)
Config(RWSet myParameterSet)
ProcessClcw(EcTUShort, ... , EcTBoolean)
ProcessRtCmd(RWCollectable myRtCmd)
ProcessLoadPacket(RWCollectable myPacket)
StartAdWithClcwCheck()
StartAdWithoutClcwCheck()
TerminateAdService()
ResumeAdService()
SetVs(EcTUInt myNewVs)
SetWinWidth(EcTUInt myWinWidth)
SetTimerInitialVal(EcTULongInt myT1Val)
SetTransmissionLimit(EcTUInt myLImit)
SetTimeoutType(EcTBoolean myTimeoutType)
GetConfigSnapshot()
ChangeRole(enum RoleType myRole)
SelectCtiu(EcTUInt myCtiu)
Ignore()
Shutdown()
InitiateFrameTransmit()
BuildFrame(RWCollectable myNewCmd)
TransmitFrame(FcGnTcCltu myCltu)
InitiateAdRetran()
RemovedAckedFrame()
AddFrameToSendQue()
AddFrameToWaitQue()
SetTimeHandler()
StartTimer()
StopTimer()
HandleTimeout()

GetConfigSnapshot()
ChangeRole(enum RoleType myRole)
StartAdWithoutClcw()
StartAdWithClcwCheck()
TerminateAd()
ResumeAd()
SelectCtiu(EcTUInt myCtiu)
SetVs(EcTUInt myVs)
SetWinWidth(EcTUInt myWinWidth)
SetTimeInitialVal(EcTULongInt myT1Val)
SetTransmissionLimit(EcTUInt myLimit)
SetTimeoutType(EcTBoolean myTimeoutType)
ShutdownFop()

SendAccept(EcTInt SeqNum)
SendStatus(EcTInt SeqNum, EcTBoolean status)

 - : RWCString
 - : FdEvEventLogger*

 + : EcTInt
 + : RWCollectable*

 - : RWCString
 - : FdEvEventLogger*

 + : EcTInt
 + : EcTVoid
 + : RWCollectable*

 + : virtual EcTInt

 - : EcTInt
 - : FdEvEventLogger*
 - : RWCString

 + : EcTInt
 + : RWCollectable*

 - : RWCString
 - : RWHashDictionary

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 + : EcTBoolean
 + : EcTBoolean

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 + : EcTVoid
 + : EcTVoid
 + : EvTVoid
 + : EcTVoid

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : EcTUInt
 - : RWCString*
 - : RWCString*
 - : enum {RealTime, StartOfLoad,MiddleOfLoad,EndOfLoad}

 +
 +
 + : RWBoolean
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTUInt
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : enum

 - : EcTUInt
 - : EcTUInt
 - : enum { Backup, Primary , Inactive}
 - : enum { RealTime, Simulation }
 - : enum { ON, OFF } = ON
 - : RWCString
 - : FcCmFopState*
 - : FoGnCmdFopRmsIF*
 - : FoGnCmdFopFormatIF*
 - : FoGnCmdFopGroundStationIF*
 - : FdEvEventLogger
 - : EcTBoolean

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : enum { ON, OFF }
 - : enum { ON, OFF }
 - : enum { ON, OFF }
 - : EcTUShortInt
 - : RWlistCollectablesQueue
 - : RWlistCollectablesQueue
 - : FcCmTcFrame
 - : enum { ON, OFF }
 - : EcTUShortInt
 - : EcTULongInt
 - : EcTUInt = 5
 - : EcTUInt
 - : EcTUInt
 - : EcTBoolean
 - : EcTUInt
 - : EcTUInt
 - : enum{ Primary, Backup , Inactive}
 - : enum { Primary, Backup}
 - : FcCmCcsdsFop*
 - : FoGnCmdFopTransmitProxy*
 - : FcCdFopFormatProxy*
 - : FoGnCmdFopRmsIF*
 - : FdEvEventLogger*
 - : FoPsClientIF*

 + : EcTInt
 + : EcTInt
 + : virtual EcTVoid
 + : virtual EcTVoid
 + : virtual EvTVoid
 + : virtual EvTVoid
 + : vitrual EcTVoid
 + : EcTVoid
 + : virtual EcTVoid
 + : virtual EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : RWCString
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : FcGnTcCltu
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : Virtual EcTVoid

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 + : EcTVoid
 + : EcTVoid

delegates request to

invokes action

builds

accessed by

has its state
changed by

accessed by

creates

accessed by

accessed by

created by

serves parameter

creates

creates

accessed by
sends real time command

and memory load packet to

accessed by

receives RMS directives from

accessed by

Figure 3.3.3-1. FopCommand Object Diagram

 3-133 305-C
D

-045-001

FoFopRequest

FoGnProcessClcwReq FoGnRmsReq

FcGnProcessRtCmdReq

FoGnStartAdWithoutClcwReq

FoGnTerminateAdReq FoGnSelectCtiuReq FoGnGetConfigSnapshotReq

myDirective

Execute(FcCmCcsdsFop *fop)
SetDirective()

Execute(FcCmCcsdsFop *fop)

Execute(FcCmCcsdsFop *fop)

myFileName

Execute(FcCmCcsdsFop *fop)

myCtiu

Execute(FcCmCcsdsFop *fop)

Execute(FcCmCcsdsFop *fop)

FoGnStartAdWithClcwCheckReq

Execute (FcCmCcsdsFop *fop)

FoGnResumeAdServiceReq

Execute(FcCmCcsdsFop *fop)

mySuspendState

SetSuspendState(EcTUInt myState)

FoGnSetVsReq

Execute(FcCmCcsdsFop *fop)
SetVs(EcTUInt myVs)

myNewVs

FoGnSetWinWidthReq

Execute(FcCmCcsdsFop *fop)
SetWinWidth(EcTUInt myWinWidth)

myWinWidth

FoGnSetTimeInitialValReq

Execute(FcCmCcsdsFop *fop)
SetTimeInitialVal(EcTULong myT1Val)

myT1Val

FoGnSetRetransmissionLimitReq

Execute(FcCmCcsdsFop *fop)
SetRetransmissionLimit(EcTUInt myLimit)

myLimit

FoGnChangeRoleReq

myCurClcw
myWaitFlag
myRetranFlag
myLockFlag
myNextExpectedSeqNo

ValidateClcw()
ArchiveClcw()
DeComClcw()
Execute(FcCmCcsdsFop *fop)

FoGnShutdownFopReq

FcGnProcessLoadPacketReq

FcGnFormatProcessReq

myPacket

Execute(FcCmCcsdsFop *fop)

Execute(FcCmCcsdsFop *fop)

myRtCmd

Execute(FcCmCcsdsFop *fop)

Execute(FcCmCcsdsFop *fop)
myRole

Execute(FcCmCcsdsFop *fop)

 - : RWCString

 + : virtual EcTInt
 + : EcTInt

 + : EcTInt

 + : EcTInt

 - : RWCString

 + : EcTInt

 - : EcTUInt

 + : EcTInt

 + : virtual EcTInt

 + : EcTInt

 + : EcTInt

 - : EcTUInt

 + : EcTInt

 + : EcTInt
 + : EcTInt

 - : EcTUShortInt

 + : EcTInt
 + : EcTInt

 - : EcTUInt

 + : EcTInt

 - : EcTULongInt

 + : EcTInt
 + : EcTInt

 - : EcTUInt

 - : EcTUInt
 - : EcTBoolean
 - : EcTBoolean
 - : EcTBoolean
 - : EcTUShortInt

 + : EcTInt
 + : EvTVoid
 + : EcTInt
 + : EcTInt

 - : RWCollectable

 + : EcTInt

 + : virtual EcTInt

 - : RWCollectable

 + : EcTInt

 + : EcTInt
 - : enum RoleType

 + : EcTInt

Figure 3.3.3-2. FopCommand Request Message Object Diagram

 3-134 305-C
D

-045-001

FcCmTcFrame

FcCmTcFrameHeader FcCmTcFramePacket FcCmTcFrameCrc

FcCmTcPacketHeader FcCmTcPacketData

myBufferPtr
myOffSet
myLength
myVersionNo
myBypassFlag
myControlCmdFlag
myScId
myCtiuIdentifier
myVirtualChannelId
mySequenceNo

Build(EcTUChar*)
SetBits(EcTUInt, EcTUInt)
GetBits(EcTUInt, EcTUInt)

myBufferPtr
myLength
myOffset

Build(EcTUChar*)

myBufferPtr
myOffset
myLength
myApid
mySequenceFlag
myPacketSeqNo
myPacketType
myVersionNo
mySecondaryHeaderFlag

Build(EcTUChar*)
SetBits(EcTUInt, EcTUInt)
GetBits(EcTUInt, EcTUInt)

myCltu
myFrame
myFrameSeqNo
myToBeRetransmittedFlag
myUplinkStatus
myFrameType
myHeaderPtr
myPacketPtr
myCrcPtr

BuildCltu()
BuildFrame(FcGnFopCmdMsg myRtCmd)
BuildFrame(FcGnFopCmdMsg myPacket)

myCrcTable
myCrcPoly
myCrcVal
myFrame

Build(EcTUChar*)
BuildCrcTable()

myPcketPtr
myLength
myOffset
myPacketHdPtr
myDataPtr

Build(EcTUChar*)

build build

build build

 - : EcTUChar*
 - : EcTUInt
 - : EcTUInt
 - : EcTUInt = 0
 - : enum { ON, OFF }
 - : enum { ON, OFF }
 - : EcTUInt
 - : EcTUInt
 - : EcTUInt = 0
 - : EcTUShortInt

 + : EcTInt
 + : EcTVoid
 + : EcTUInt

 - : EcTUChar*
 - : EcTUInt
 - : EcTUInt

 + : EcTInt

 - : EcTUChar*
 - : EcTUInt
 - : EcTUInt
 - : EcTUInt = 0
 - : EcTUInt = 11
 - : EcTUShortInt = 0
 - : EcTUInt = 1
 - : EcTUInt = 0
 - : EcTUInt = 0

 + : EcTInt
 + : EcTVoid
 + : EcTUInt

 - : EcTUChar*
 - : EcTUChar*
 - : EcTUShortInt
 - : enum { on , off }
 - : enum{ good, bad }
 - : enum{ AD, BC }
 - : FcCmTcFrameHeader*
 - : FcCmTcFramePacket*
 - : FcCmTcFrameCrc*

 + : FcCmTcCltu
 + : EcTInt
 + : EcTInt

 - : static EcTUInt*
 - : EcTUInt
 - : EcTUInt
 - : EcTUChar*

 + : EcTInt
 + : EcTVoid

 - : EcTUChar*
 - : EcTUInt
 - : EcTUInt
 - : FcCmTcPacketHeader*
 - : FcCmTcPacketData*

 + : EcTInt

Figure 3.3.3-3. FopCommand TcFrame Object Diagram

 3-135 305-CD-045-001

3.3.4 FopCommand Dynamic Model Description

The following are the FopCommand scenarios which are defined in this section.

Real-Time Command FOP Initialization: Successful

Real-Time Command FOP Initialization: Failure

Real-Time Command FOP Init. AD Service w/out CLCW: Successful

Real-Time Command FOP Init. AD Service w/out CLCW: Failure

Real-Time Command FOP Init. AD Service with CLCW: Successful

Real-Time Command FOP Init. AD Service with CLCW: Failure

Real-Time Command FOP Init. AD Service with Set VR: Successful

Real-Time Command FOP Init. AD Service with Set VR: Failure

Real-Time Command FOP Command Transmission

Real-Time Command FOP Command Retransmission

 Additionally, a state diagram for the FcCmCcsdsFop object is included.

3.3.4.1 Real-Time Command FOP Initialization: Successful Scenario

3.3.4.1.1 Real-Time Command FOP Initialization: Successful Abstract

The purpose of the "Real-Time Command FOP Initialization: Successful" scenario is to describe
the process by which the FOP (Frame Operation Procedure) software of the FopCommand process
is initialized.

Figure 3.3.4.1-1 is the event trace diagram which corresponds to this scenario.

3.3.4.1.2 Real-Time Command FOP Initialization: Successful Summary Information

Interfaces:

Parameter Server

Data Management Subsystem

Resource Management Subsystem

FormatCommand

TransmitCommand

Stimulus:

The Resource Manager (RMS) starts up the FopCommand process.

Desired Response:

The Resource Management receives the status of successful FOP initialization.

Pre-Conditions:

Configuration file must be identified and available.

Post-Conditions:

The FOP is placed in the "initial" state, and ready for directives.

 3-136 305-CD-045-001

3.3.4.1.3 Scenario Description

The main operation of the FopCommand application (FcCmFopAppl) is invoked when the
Resource Manager (RMS) starts up the process. The command line will contain the IP address of
the RMS. This address is forwarded to the FcCmCcsdsFop, the controller of the FOP processing.
The IP address is used to establish communication with the RMS, via FoGnCmdFopRmsIF. Once
communication is established, FopCommand process sends a message to RMS subsystem and
informs it that the process is ready. The FopCommand then waits for a configuration request
message from RMS. Upon receipt of the message, the message is read and input parameters are
extracted from the message. These parameters contain IP addresses which are used to establish
communications with other processes, specifically Parameter Server, and the Command processes
FormatCommand and TransmitCommand. Other parameters include the spacecraft ID, database
ID, and the process "role" as part of a either a primary or backup string. The DMS and EDOS
addresses are looked up from a name server.

A DMS connection is established via FdEvEventLogger for events processing.

FoDsFile is then utilized to access the database file. The file information is used to configure the
FOP attributes and will contain default values for various attributes. This configuration
information is then used to configure the FOP.

Next, the Parameter Server, the FormatCommand process and the TransmitCommand process
connections are established via FoPsClientIF, FcCmdFopFormatIF and FcCmFopTransmitProxy
objects respectively.

Finally, an FcCmFopState object (as a derived FcCmFopInitial object) is created and initialized,
and the initialization is complete.

A "successful initialization" event message is logged via FdEvEventLogger, and a successful
completion status is returned to RMS.

 3-137 305-C
D

-045-001

FcCmCcsdsFop FoGnCmdFopRmsIFFcCmFopAppl

FdEvEventLogger ParameterSever FcCmCmdFopFormatIF FoGnCmdFopTransmsitProxyFoDsFile FcCmFopState

init (RMS address)

initiate connection
(RMS address)

RMS config message arrived

initiate connection(DMS address)

initiate connection

successfully connected

initiate connection (FormatCommand process address)

successfully connected

initiate connection (TransmitCommand process address)

successfully connected

fop configured successfully

configured successfully

access database and get configuration info

notifify connected

configured successfully

config fop(configuration parameter set)

successfully configured

notify RMS we are awake

wait for config
info from RMS

read config info
from the incoming

mesg

get DMS and
EDOS addresses
from name server

config
FopCommand

process

Figure 3.3.4.1-1. FopCommand Initialization: Successful

 3-138 305-CD-045-001

3.3.4.2 Real-Time Command FOP Initialization: Failure Scenario

3.3.4.2.1 Real-Time Command FOP Initialization: Failure Abstract

The purpose of the "Real-Time Command FOP Initialization: Failure" scenario is to describe the
process by which the FOP (Frame Operation Procedure) software of the FopCommand process
handles a fatal error during initialization.

Figure 3.3.4.2-1 is the event trace diagram which corresponds to this scenario.

3.3.4.2.2 Real-Time Command FOP Initialization: Failure Summary Information

Interfaces:

Data Management Subsystem

Resource Management Subsystem

Stimulus:

The Resource Manager (RMS) starts up the FopCommand process.

Desired Response:

The Resource Management receives the failure status regarding FOP initialization.

Pre-Conditions:

Configuration file must be identified and available.

Post-Conditions:

The Resource Management is notified of the failure.

3.3.4.2.3 Scenario Description

The main operation of the FopCommand application (FcCmFopAppl) is invoked when the
Resource Manager (RMS) starts up the process. The command line will contain the IP address of
the RMS. This address is forwarded to the FcCmCcsdsFop, the controller of the FOP processing.
The IP address is used to establish communication with the RMS, via FoGnCmdFopRmsIF. Once
communication is established, FopCommand process sends a message to RMS subsystem and
informs it that the process is ready. The FopCommand then waits for a configuration request
message from RMS. Upon receipt of the message, the message is read and input parameters are
extracted from the message. These parameters contain IP addresses which are used to establish
communications with other processes, specifically the Parameter Server, and the Command
processes FormatCommand and TransmitCommand. Other parameters include the spacecraft ID,
database ID, and the process "role" as part of a either a primary or backup string. The DMS and
EDOS addresses are looked up from a name server.

An attempt is made to establish connection with DMS via FdEvEventLogger for events processing.
However, the connection is unsuccessful, and a Failure completion status is returned to RMS.

 3-139 305-C
D

-045-001

FcCmCcsdsFop FoGnCmdFopRmsIFFcCmFopAppl FdEvEventLogger

init (RMS address)

initiate connection
(RMS address)

RMS configuration info arrived

failed to connect
to DMS

initialization failed

initiate connection (DMS address)

connection failed

notify RMS we are awake

wait for config
info from RMS

read config info
from the incoming

mesg

get DMS and EDOS
addresses from the

name server

Figure 3.3.4.2-1. FopCommand Initialization: Failure Scenario

 3-140 305-CD-045-001

3.3.4.3 Real-Time Command FOP Init. AD Service w/out CLCW: Successful
Scenario

3.3.4.3.1 Real-Time Command FOP Init. AD Service w/out CLCW: Successful Abstract

The purpose of the "Real-Time Command FOP Init. AD Service w/out CLCW: Successful"
scenario is to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand task is configured to uplink commands, without waiting for a "clear" CLCW.

Figure 3.3.4.3-1 is the event trace diagram which corresponds to this scenario.

3.3.4.3.2 Real-Time Command FOP Init. AD Service w/out CLCW: Successful Summary
Information

Interfaces:

Data Management Subsystem

Resource Management Subsystem

Stimulus:

The Resource Manager (RMS) forwards the "Initialize w/out CLCW" directive.

Desired Response:

The FOP is placed in the "active" state.

Pre-Conditions:

FOP is in the "initial" state.

Post-Conditions:

The FOP is in "active" state and ready to process formatted commands.

3.3.4.3.3 Scenario Description

The FOP is in the "initial" state and waiting for directives. Upon arrival of the "initialize w/out
clcw" directive from RMS, the FoGnCmdFopRmsIF creates a request object which corresponds to
the directive; FoGnStartAdWithoutClcwReq. This object, in turn, echoes the directive via
FoEvEventLogger. It then indirectly (via FcCmCcsdsFop) invokes the
StartAdWithoutClcwCheck operation of FcCmFopState, which successfully initializes the FOP.
A success event message is logged, the Resource Manager is notified of the successful processing
of the directive and the FOP is placed in the "active" state.

 3-141 305-C
D

-045-001

FoGnStartAdWithoutClcwReq FoGnCmdFopRmsIF FcCmCcsdsFop FcCmFopInitial FdEvEventLogger

wait for input in
Fop Initial state

(S6)

create
request object

echo received directive

start AD service without clcw check

start AD service
withut clcw check

do initialization
and successful

log AD service
successfully initialized

message
send AD service successfully initialized

message to RMS

change state to
active (S1)

wait for input in
Fop Active state

(S1)

notified directive
arriced from RMS

handle input

log Fop state
changing mesg

Figure 3.3.4.3-1. FopCommand Init. AD Service w/out CLCW: Successful

 3-142 305-CD-045-001

3.3.4.4 Real-Time Command FOP Init. AD Service w/out CLCW: Failure Scenario

3.3.4.4.1 Real-Time Command FOP Init. AD Service w/out CLCW: Failure Abstract

The purpose of the "Real-Time Command FOP Init. AD Service w/out CLCW: Failure" scenario
is to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand task recovers from an unsuccessful attempt to configured for uplink commands,
without waiting for a "clear" CLCW.

Figure 3.3.4.4-1 is the event trace diagram which corresponds to this scenario.

3.3.4.4.2 Real-Time Command FOP Init. AD Service w/out CLCW: Failure Summary Information

Interfaces:

Data Management Subsystem

Resource Management Subsystem

Stimulus:

The Resource Manager (RMS) forwards the "Initialize w/out CLCW" directive.

Desired Response:

The FOP remains in the "initial" state.

Pre-Conditions:

FOP is in the "initial" state.

Post-Conditions:

FOP is in the "initial" state.

3.3.4.4.3 Scenario Description

The FOP is in the "initial" state and waiting for directives. Upon arrival of the "initialize w/out
clcw" directive from RMS, the FoGnCmdFopRmsIF creates a request object which corresponds to
the directive; FoGnStartAdWithoutClcwReq. This object, in turn, echoes the directive via
FdEvEventLogger. It then indirectly (via FcCmCcsdsFop) invokes the
StartAdWithoutClcwCheck operation of FcCmFopState, which fails to initialize the FOP. A
failure event message is logged, the Resource Manager is notified of the failure to process the
directive and the FOP is left in the "initial" state.

 3-143 305-C
D

-045-001

FoGnStartAdWithoutClcwReq FoGnCmdFopRmsIF FcCmCcsdsFop FcCmFopInitial FdEvEventLogger

wait for input in
Fop Initial state

(S6)

create
request object

echo received directive

start AD service without clcw check
Start AD service
withut clcw check

do initialization
and failed

Log AD service
initialization failed

message
send AD service Initialization failed

message to RMS

wait for input in
Fop Initial state

(S6)

notified directive
arrived from RMS

handle input

Figure 3.3.4.4-1. FopCommand Init. AD Service w/out CLCW: Failure scenario

 3-144 305-CD-045-001

3.3.4.5 Real-Time Command FOP Init. AD Service with CLCW: Successful Scenario

3.3.4.5.1 Real-Time Command FOP Init. AD Service with CLCW: Successful Abstract

The purpose of the "Real-Time Command FOP Init. AD Service with CLCW: Successful" scenario
is to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand process is configured to uplink commands upon receipt of a "clean" CLCW; i.e., the
Wait, Retransmit and Lockout flags are "off", and the sequence number equals its expected value.

Figure 3.3.4.5-1 is the event trace diagram which corresponds to this scenario.

3.3.4.5.2 Real-Time Command FOP Init. AD Service with CLCW: Successful Summary
Information

Interfaces:

EDOS

Data Management Subsystem

Resource Management Subsystem

Stimulus:

The Resource Manager (RMS) forwards the "Initialize w/out CLCW" directive.

Desired Response:

The FOP is placed in the "active" state.

Pre-Conditions:

FOP is in the "initial" state.

Post-Conditions:

The FOP is in "active" state and ready to process formatted commands.

3.3.4.5.3 Scenario Description

The FOP is in the "initial" state and waiting for directives. Upon arrival of the "initialize with
CLCW" directive from RMS, the FoGnCmdFopRmsIF creates a request object that corresponds to
the directive; FoGnStartAdWithClcwReq. It then indirectly (via FcCmCcsdsFop) invokes the
StartAdWithClcwCheck operation of FcCmFopState, which successfully initializes the FOP and
sets the timer (used for detection of certain retransmission circumstances). An event message for
state change is issued, and FopProcess goes into a wait, in the "initializing without BC frame" state,
waiting for either the timer, or a directive.

 3-145 305-C
D

-045-001

FoGnCmdFopGroundStationIF FoGnCmdFopRmsIF FoGnStartAdWithClcwCheckReq FcCmCcsdsFop FcCmFopInitial FcCmFopInitializeWithoutBcFoGnProcessClcwReqFoDsFile
FdEvEventLogger

wait for input in the
initial state (S6)

handle input

creat request object
start AD service with

CLCW check start AD service
with CLCW check

change state to
initializing without BC Frame

handle input

create request object
Process CLCW

Process CLCW

Process CLCW

CLCW indicates
clean status

cancel
timer

AD service started

change state to Fop active

notified directive
arrived from RMS

set timer

archive CLCW

AD service started

state changed

notified CLCW arrived

wait for input in
Initializing without BC frame

state (S4)

log Fop state changing
mesg

wait for input in
Fop active state (S1)

Figure 3.3.4.5-1. FopCommand Init. AD Service with CLCW: Successful

 3-146 305-CD-045-001

Upon arrival of a CLCW, the FoGnCmdFopGroundStationIF archives the CLCW via FoDsFile,
and creates a request object that corresponds to the directive; FoGnProcessClcwReq.
FoGnProcessClcwReq routes the CLCW through FcCmCcsdsFop to
FcCmFopInitializeWithoutBc for processing. The CLCW indicates a "clean" status, so a success
event message is logged, the Resource Manager is notified of the successful processing of the
directive and the FOP is placed in the "active" state.

3.3.4.6 Real-Time Command FOP Init. AD Service with CLCW: Failure Scenario

3.3.4.6.1 Real-Time Command FOP Init. AD Service with CLCW: Failure Abstract

The purpose of the "Real-Time Command FOP Init. AD Service with CLCW: Failure" scenario is
to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand process responds to a failure in the attempt to configure to uplink commands upon
receipt of a "clean" CLCW.

Figure 3.3.4.6-1 is the event trace diagram which corresponds to this scenario.

3.3.4.6.2 Real-Time Command FOP Init. AD Service with CLCW: Failure Summary Information

Interfaces:

EDOS

Data Management Subsystem

Resource Management Subsystem

Stimulus:

The Resource Manager (RMS) forwards the "Initialize w/out CLCW" directive.

Desired Response:

Appropriate error messages are logged, and the FOP remains in the "initial" state.

Pre-Conditions:

FOP is in the "initial" state.

Post-Conditions:

The FOP remains in "initial" state.

3.3.4.6.3 Scenario Description

The FOP is in the "initial" state and waiting for directives. Upon arrival of the "initialize with
CLCW" directive from RMS, the FoGnCmdFopRmsIF creates a request object that corresponds to
the directive; FoGnStartAdWithClcwReq. It then indirectly (via FcCmCcsdsFop) invokes the
StartAdWithClcwCheck operation of FcCmFopState, which successfully initializes the FOP and
sets the timer (used for detection of certain retransmission circumstances). An event message for
state change is issued, and FopCommand process goes into a wait, in the "initializing without BC
frame" state, waiting for either the timer, or a directive.

 3-147 305-CD-045-001

Upon arrival of a CLCW, the FoGnCmdFopGroundStationIF archives the CLCW via FoDsFile,
and creates a request object that corresponds to the directive; FoGnProcessClcwReq.
FoGnProcessClcwReq routes the CLCW through FcCmCcsdsFop to
FcCmFopInitializeWithoutBc for processing. The CLCW, however, indicates a "not clean" status
so a failure event message is logged, the Resource Manager is notified of the failure in the
processing of the directive, and the FOP remains in the "initial" state.

 3-148 305-C
D

-045-001

FoGnCmdFopGroundStationIF FoGnCmdFopRmsIF FoGnStartAdWithClcwCheckReq FcCmCcsdsFop FcCmFopInitial FcCmFopInitializeWithoutBcFoGnProcessClcwReqFoDsFile FdEvEventLogger

watiing for input in the
initial state (S6)

handle input

creat request object
start AD service with

CLCW check start AD service
with CLCW check

change state to
initializing without BC Frame

wait for input in the
Initializing without BC frame

state (S4)

handle input

create request object
Process CLCW

Process CLCW

process CLCW

CLCW indicates
not clean status

cancel
timer

AD Service initialization failed

change state to initial

set timer

notified directive
arrived from RMS

notified CLCW arrived

archive CLCW

AD Service initialization failed

wait for input
in Fop initial state

(S6)

log Fop state
changing mesg

log Fop state
changing mesg

Figure 3.3.4.6-1. FopCommand Init. AD Service with CLCW: Failure scenario

 3-149 305-CD-045-001

3.3.4.7 Real-Time Command FOP Init. AD Service with Set VR: Successful Scenario

3.3.4.7.1 Real-Time Command FOP Init. AD Service with Set VR: Successful Abstract

The purpose of the "Real-Time Command FOP Init. AD Service with Set VR: Successful" scenario
is to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand process is configured to uplink commands in the "set VR" mode. This includes
uplinking of the BC type frame, which sets the FARM's sequence counter (VR) onboard the
spacecraft.

Figure 3.3.4.7-1 is the event trace diagram which corresponds to this scenario.

3.3.4.7.2 Real-Time Command FOP Init. AD Service with Set VR: Successful Summary
Information

Interfaces:

EDOS

Data Management Subsystem

FormatCommand

TransmitCommand

Stimulus:

FormatCommand forwards the "Initialize with set VR" command.

Desired Response:

The FOP is placed in the "active" state, and the sequence counter onboard the spacecraft
has been set to the specified value.

Pre-Conditions:

FOP is in the "initial" state.

Post-Conditions:

The FOP is in "active" state and ready to process formatted commands.

3.3.4.7.3 Scenario Description

The FOP is in the "initial" state and waiting for inputs. Upon arrival of a command from
CommandFormat process, the controller directs FoGnCmdFopFormatIF to create a request object
that corresponds to the incoming command, FcGnProcessRtCmdReq. It then indirectly (via
FcCmCcsdsFop) invokes the ProcessRtCmd operation of FcCmFopInitial, which realizes it is a
control command by checking the command type flag. The FcCmFopInitial then prepares CLTU
of a BC transfer frame for uplinking.

The Transfer Frame is composed of a CCSDS Packet, so this is first built (via FcCmTcPacketData
and FcCmTcPacketHeader). The Transfer Frame is completed by adding a header (via
FcCmTcFrameHeader) and calculating a CRC (via FcCmTcFrameCrc).

The completed transfer frame is then further processed into a CLTU (via FcCmTcCltu) which is
then added to the queue of commands sent, and forwarded to the TransmitCommand process (via
FoGnCmdFopTransmitProxy).

The timer (used for detection of certain retransmission circumstances) is then set, and control is

 3-150 305-CD-045-001

returned to FcCmCcsdsFop in the Initializing with BC frame state, and waits for a CLCW
confirming its receipt.

Upon arrival of a CLCW, the FoGnCmdFopGroundStationIF archives the CLCW via FoDsFile,
and creates a request object that corresponds to the directive; FoGnProcessClcwReq.
FoGnProcessClcwReq routes the CLCW through FcCmCcsdsFop to FcCmFopInitializeWithBc
for processing. The CLCW indicates a "clean" status, so a success event message is logged, the
Resource Manager is notified of the successful processing of the directive and the FOP is placed
in the "active" state.

 3-151 305-C
D

-045-001

FoGnCmdFopGroundStationIF FoGnCmdFopFormatIF FcGnProcessRtCmdReq FcCmCcsdsFop FcCmFopInitial FcCmFopInitializeWithBcFoGnProcessClcwReq FdEvEventLoggerFcCmTcFrame FoGnCmdFopTransmitProxyFoDsFile

o
o
o

handle input

creat request object

process new cmd

process new cmd

flame built

transmit (CLTU)

change to initializing
with BC frame state

 (S5)

handle input

process CLCW

process CLCW

log Fop successfully configed with a new seq num event mesg
log Fop State changing event mesg

change state to active

wait for input in
Fop initial state

(S6)

notified new command
arrived from

FormatCommand process

build type BC frame

build CLTU and create instance
of FcCmTcCltu

done

archive received
CLCW

create request object

Fop successfully configured with a new sequence no

log Fop state changing event mesg

found out
it's a control
command

build

start timer

wait for CLCW in
state S5

notified CLCW
arrived

Process CLCW and
clean status has

been seen

cancel timer

wait input in
Fop Active state

(S1)

Figure 3.3.4.7-1. FopCommand Init. AD Service with set VR: Successful scenario

 3-152 305-CD-045-001

3.3.4.8 Real-Time Command FOP Init. AD Service with Set VR: Failure Scenario

3.3.4.8.1 Real-Time Command FOP Init. AD Service with Set VR: Failure Abstract

The purpose of the "Real-Time Command FOP Init. AD Service with Set VR: Failure" scenario is
to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand process responds to a failure in the attempt to configured to uplink commands in the
"set VR" mode.

Figure 3.3.4.8-1 is the event trace diagram which corresponds to this scenario.

3.3.4.8.2 Real-Time Command FOP Init. AD Service with Set VR: Failure Summary Information

Interfaces:

EDOS

Data Management Subsystem

FormatCommand

TransmitCommand

Stimulus:

FormatCommand forwards the "Initialize with set VR" command.

Desired Response:

Appropriate error messages are logged, and the FOP remains in the "initial" state.

Pre-Conditions:

FOP is in the "initial" state.

Post-Conditions:

The FOP remains in "initial" state.

3.3.4.8.3 Scenario Description

The FOP is in the "initial" state and waiting for inputs. Upon arrival of a command from
CommandFormat process, the controller directs FoGnCmdFopFormatIF to create a request object
that corresponds to the incoming command, FcGnProcessRtCmdReq. It then indirectly (via
FcCmCcsdsFop) invokes the ProcessRtCmd operation of FcCmFopInitial, which realizes it is a
control command by checking the command type flag. The FcCmFopInitial then prepares CLTU
of a BC transfer frame for uplinking.

The Transfer Frame is composed of a CCSDS Packet, so this is first built (via FcCmTcPacketData
and FcCmTcPacketHeader). The Transfer Frame is completed by adding a header (via
FcCmTcFrameHeader) and calculating a CRC (via FcCmTcFrameCrc).

The completed transfer frame is then further processed into a CLTU (via FcCmTcCltu) which is
then added to the queue of commands sent, and forwarded to the TransmitCommand process (via
FoGnCmdFopTransmitProxy).

The timer (used for detection of certain retransmission circumstances) is then set, and control is
returned to FcCmCcsdsFop in the Initializing with BC frame state, and waits for a CLCW
confirming its receipt.

 3-153 305-CD-045-001

Upon arrival of a CLCW, the FoGnCmdFopGroundStationIF archives the CLCW via FoDsFile,
and creates a request object that corresponds to the directive; FoGnProcessClcwReq.
FoGnProcessClcwReq routes the CLCW through FcCmFop to FcCmFopInitializeWithBc for
processing. The CLCW indicates a "not clean" status, so the FOP remains in the "Initializing with
BC frame" state.

A few more CLCWs are received, but none indicate a "clean" status.

Eventually, the timer expires before a CLCW indicating a "clean" status is received, and the BC
frame is retransmitted via FoGnCmdFopTransmitProxy. The timer is reset and the transmit
counter is incremented by 1.

The retransmission takes place a few more times, until eventually the transmit counter exceeds the
transmit limit. The directive is deemed as having failed at this point. FOP shutdown procedure is
commenced, an event message indicating directive failure is logged via FdEvEventLogger,
FormatCommand is notified of the failure via FoGnCmdFopFormatIF, and the FOP is returned to
the "initial" state.

 3-154 305-C
D

-045-001

FoGnCmdFopGroundStationIF FoGnCmdFopFormatIF FcGnProcessRtCmdReq FcCmCcsdsFop FcCmFopInitial FcCmFopInitializeWithBcFoGnProcessClcwReq FdEvEventLoggerFcCmTcFrame FoGnCmdFopTransmitProxyFoDsFile

o
o
o

o
o
o

handle input

creat request object

process new cmd

process new cmd

flame built

transmit (CLTU)

change to initializing
with BC frame state

 (S5)

handle input

process CLCW

process CLCW

wait for input in
Fop initial state

(S6)

notified new cmd arrived
from FormatCommand process

build type BC frame

calculate CLTU and create instance
of FcCmTcCltu

done

archive received
CLCW

create request object

log Fop state changing event mesg

done

found out it's a
control command

transmit(CLTU)

done

time out happened
and transmit counter

< transmit limit

time out happened and
transmit counter =

transmit limit

command uplink failed

log AD service configuration failed event mesg
log Fop State changing mesg

change state to Initial S6

build

start timer

wait for CLCW
in state S5

notified CLCW arrived

process CLCW and
clean status not seen

continue wait for
CLCW in S5 state

initiate BC frame
retransmission

restart timer and
increment transmit

counter by 1

continue wait for CLCW
in S5 state

do shutdown

wait for input in
Fop Initial state

S6

Figure 3.3.4.8-1. FopCommand Init. AD Service with set VR: Failure scenario

 3-155 305-CD-045-001

3.3.4.9 Real-Time Command FOP Command Transmission Scenario

3.3.4.9.1 Real-Time Command FOP Command Transmission Abstract

The purpose of the "Real-Time Command FOP Command Transmission" scenario is to describe
the process by which the FOP (Frame Operation Procedure) software of the FopCommand process
processes a 1553-b command received from the FormatCommand process into a CLTU
conforming to CCSDS standards for the AM-1 spacecraft, and forwards the CLTU to the
TransmitCommand process.

Figure 3.3.4.9-1 and 3.3.4.9-2 are the event trace diagrams which correspond to this scenario.

3.3.4.9.2 Real-Time Command FOP Command Transmission Summary Information

Interfaces:

Data Management Subsystem

EDOS

FormatCommand

TransmitCommand

Stimulus:

A 1553-b command is forwarded to FopCommand by FormatCommand.

Desired Response:

CLTUs are forwarded to TransmitCommand.

Pre-Conditions:

FOP is in the "active" state.

Post-Conditions:

FOP remains in the "active" state.

3.3.4.9.3 Scenario Description

The scenario begins with FopCommand waiting for input in the Active state. FormatCommand
process forwards the first of three 1553-b commands in this scenario to FopCommand. The
following events transpire in response to receipt of a command, and constitutes the "send" portion
of FopCommand processing:

The command is echoed via FdEvEventLogger. FoGnCmdFopFormatIF creates the appropriate
object to process the command directive: a FcGnProcessRtCmdReq object.

The Execute operation of this new FcGnProcessRtCmdReq object is invoked, which initiates the
building of a CCSDS Transfer Frame (via FcCmTcFrame).

The details for building the Transfer Frame are shown in Figure 3.3.4.9-2. The Transfer Frame is
composed of a CCSDS Packet, so this is first built (via FcCmTcPacketData and
FcCmTcPacketHeader). The Transfer Frame is completed by adding a header (via
FcCmTcFrameHeader) and calculating a CRC (via FcCmTcFrameCrc).

The completed transfer frame is then further processed into a CLTU (via FcCmTcCltu) which is
then added to the queue of commands sent, and forwarded to the TransmitCommand process (via

 3-156 305-CD-045-001

FoGnCmdFopTransmitProxy).

The timer (used for detection of certain retransmission circumstances) is then set, and control is
returned to FcCmCcsdsFop in the Active state, thus completing the "send" portion of the
FopCommand processing, for the first command in this scenario.

A CLCW arrives, and FoGnCmdGroundStationIF handles it. The CLCW is archived via
FoDsFile, and FoGnProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that no new frames are acknowledged onboard the spacecraft. Control is returned to
FcCmCcsdsFop in the Active state, thus completes processing of the first CLCW in this scenario.

FormatCommand process forwards the the second 1553-b command in to FopCommand. The
"send" portion of FopCommand processing for this command is identical to that for the first
command.

FormatCommand process forwards the the third 1553-b command in to FopCommand. Again, the
"send" portion of FopCommand processing for this command is also identical to that for the first
command.

A second CLCW arrives, and FoGnCmdGroundStationIF handles it. The CLCW is archived via
FoDsFile, and FoGnProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that the first command sent in this scenario was received onboard the spacecraft. The
CLTU is removed from the queue of commands sent, and an uplink verification event message is
issued via FdEvEventLogger. The FormatCommand process is informed of the successful uplink
status of the command via FoGnCmdFopFormatIF, and control is returned to FcCmCcsdsFop in
the Active state, thus completes processing of the second CLCW in this scenario.

A third CLCW arrives, and FoGnCmdGroundStationIF handles it. The CLCW is archived via
FoDsFile, and FcCmProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that both the second and third commands sent in this scenario were received onboard the
spacecraft. The two CLTUs are removed from the queue of commands sent, and an uplink
verification event message is issued via FdEvEventLogger. The FormatCommand process is
informed of the successful uplink status of these commands via FoGnCmdFopFormatIF, and
control is returned to FcCmCcsdsFop in the Active state, thus completes processing of the third
(and last) CLCW in this scenario.

 3-157 305-CD-045-001

FoGnCmdFopFormatIF FcGnProcessRtCmdReq FcCmCcsdsFop FcCmFopActive FdEvEventLoggerFcCmTcFrame FoGnCmdFopTransmitProxyFoGnProcessClcwReqFoGnCmdGroundStationIFFoDsFile

.

.

.

.

.

.

.

.

.

.

.

process new command

process new command

build AD frame

create request
object

waiting for input in the
Fop Active state

(S1)

notified 1st command arrived
from FormatCommadn process

echo received message

handle input

frame build

build

calculate CLTU

done

add 1st frame to
cmd send que

transmit(CLTU)

start the timer

1st command sent

waiting for input in
Fop Active state (S1)

notified CLCW arrived

handle input

request process
 CLCW

process CLCW

process CLCW

archive CLCW

no new frame acked

done

2nd command sent

3rd command sent

handle input
archive CLCW

request process
CLCW

process CLCW

process CLCW

done

1st command received

1st command received

handle input
archive CLCW

request to
process CLCW

process CLCW

process CLCW

2nd and 3rd command arked
2nd and 3rd command arked

done

notified 2nd command arrived
from FormatCommand process

notified 3rd command arrived
from FormatCommand process

notified CLCW arrived

1st command
acked

remove 1st command
from send queue

notified CLCW arrived

process CLCW
and 2nd and 3rd cmd acked

remove acked cmds from
send queue

waiting input in
Fop Active state

(S1)

Figure 3.3.4.9-1. FopCommand Transmission scenario

 3-158 305-C
D

-045-001

FcCmFopActive FcCmTcFrame FcCmTcFrameData FcCmTcFrameHeader FcCmTcFrameCrc FcCmTcPacketData FcCmTcPacketHeader

build type AD frame

build frame data part

build packet data part

build

packet data part is built

build packet header (data part length)

build

done(length)

done (length)

build frame header (data part length)

build

frame header is built

calculate CRC

calculate

done

frame is built

Figure 3.3.4.9-2. FopCommand: Building Transfer Frame

 3-159 305-CD-045-001

3.3.4.10 Real-Time Command FOP Command Retransmission Scenario

3.3.4.10.1 Real-Time Command FOP Command Retransmission Abstract

The purpose of the "Real-Time Command FOP Command Retransmission " scenario is to describe
the process by which the FOP (Frame Operation Procedure) software of the FopCommand process
performs a retransmission.

Figure 3.3.4.10-1 is the event trace diagram which correspond to this scenario.

3.3.4.10.2 Real-Time Command FOP Command Retransmission Summary Information

Interfaces:

Data Management Subsystem

EDOS

FormatCommand

TransmitCommand

Stimulus:

A CLCW is received from EDOS.

Desired Response:

CLTUs are retransmitted to the spacecraft.

Pre-Conditions:

FOP is in the "active" state, with three (3) commands in the queue of unconfirmed
commands.

Post-Conditions:

The FOP is in the "active" state, with no commands in the queue of unconfirmed
commands.

3.3.4.10.3 Scenario Description

The scenario begins with FopCommand waiting for input in the Active state. A CLCW arrives,
and FoGnCmdGroundStationIF handles it. The CLCW is archived via FoDsFile, and
FcCmProcessClcwReq routes it to FcCmFopActive for processing. The CLCW indicates that the
first command sent in the queue was received onboard the spacecraft. The CLTU is removed from
the queue of commands sent, and an uplink verification event message is issued via
FdEvEventLogger. The FormatCommand process is informed of the successful uplink status of
the command via FoGnCmdFopFormatIF, and control is returned to FcCmCcsdsFop in the Active
state.

A second CLCW arrives, and FoGnCmdGroundStationIF handles it. The CLCW is archived via
FoDsFile, and FcCmProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that retransmission of unconfirmed commands (CLTUs) is required. The two remaining
CLTUs in the queue are retransmitted via FoGnCmdFopTransmitProxy and the timer (used for
detection of certain retransmission circumstances) is then set, and control is returned to
FcCmCcsdsFop in the "Retransmit without wait" state.

A third CLCW arrives, and FoGnCmdGroundStationIF handles it. As before, the CLCW is

 3-160 305-CD-045-001

archived via FoDsFile, and FoGnProcessClcwReq routes it to FcCmFopActive for processing.
The CLCW indicates that the first retransmitted command has been received by the spacecraft.
The CLTU is removed from the queue of commands sent, and an uplink verification event message
is issued via FdEvEventLogger. The FormatCommand process is informed of the successful
uplink status of the command via FoGnCmdFopFormatIF. Inasmuch as it has been confirmed that
the retransmission of the queue is at least partially successful, control is now returned to
FcCmCcsdsFop, in the Active state.

A fourth CLCW arrives, and FoGnCmdGroundStationIF handles it. Again, the CLCW is archived
via FoDsFile, and FoGnProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that the second retransmitted command has been received by the spacecraft. The CLTU
is removed from the queue of commands sent, and an uplink verification event message is issued
via FdEvEventLogger. The FormatCommand process is informed of the successful uplink status
of the command via FoGnCmdFopFormatIF, and control is returned to FcCmCcsdsFop in the
Active state.

 3-161 305-CD-045-001

FcCmCcsdsFop FcCmFopActive FdEvEventLoggerFoGnCmdFopTransmitProxy

.

.

.

FcCmFopRxmitWithoutWait
FoGnProcessClcwReqFoGnCmdGroundStationIFFoDsFile

FoGnCmdFormatIF

waiting for input in the
Fop Active state

(S1)

notified CLCW arrived

handle input
archive CLCW

request to
process CLCW

process CLCW

process CLCW

CLCW indicates
1st cmd received

remove cmd from
 cmd sed que

done

handle input

archive CLCW
request to

process CLCW
process CLCW

process CLCW

1st command received
1st command received

continue waiting in
Fop Active State (S1)

notified CLCW arrived

CLCW indicates
retran flag ON

increase transmit counter

transmit 1st cmd on sned que(CLTU)

transmit 2nd com on send que(CLTU)

restart the timer

log Fop State change event mesg
change state to

Rxmit without wait

wait input in
Fop Retransmit without wait

State (S2)

notified CLCW arrived

handle input
archive CLCW

request to
process CLCW

process CLCW

process CLCW

CLCW indicates
1st retransmitted frame

received

remove the acked frame
from que and set transmit

counter to 1

2nd com received
2nd cmd received

change state to Fop Active

log Fop state change event mesg

wait in Fop Active
state (S1)

notified CLCW arrived

handle input
archive CLCW

request to
processCLCW

process CLCW
process CLCW

CLCW indicates
3rd command received

3rd com received

3rd cmd received

done

continue wait in
Fop Active State

S(1)

Figure 3.3.4.10-1. FopCommand Retransmission scenario

 3-162 305-CD-045-001

3.3.4.11FcCmCcsdsFop State Diagram Description:

The dynamic behavior of FcCmCcsdsFop object is best described by a state machine model. At a
given time FcCmCcsdsFop object is in one of its six well defined state. When an input arrives or
internal event happens, the object analyzes the consequence of these events, takes proper actions
and transitions to next state according to a set of per defined rules.

Once initialized, the controller can accept inputs from the following sources: "Transfer command
data" request from CommandFormat process (command data may be in the form of 1553B or
memory load packet), CLCWs from EDOS, configuration change directives from RMS and
internal events which include all the possible exceptions, timeout, and change state request from
FcCmFopState.

After initialization the controller is in "Initial" state (S6). It waits for input from outside. In this
state, the controller can accept initialization and configuration related directives from RMS or
control command (set VR and unlock) from FormatCommand process. All other inputs are either
rejected and logged as error or ignored when they are not harmful to the system. When a
StartAdWithoutClcw directive received from RMS, the controller does necessary steps to
initialize the Fop protocol and transitions to "Active" state. Normal commanding procedure starts.
When a StartAdWithClcwCheck directive received from RMS, the controller does necessary
steps to initialize the protocol and sets a timer before it transitions to "Initializing without BC
Frame" state where it waits for a valid CLCW to show up. When a valid CLCW has been received,
Fop protocol transitions to Fop Active state and normal commanding procedure starts. When a
SetVr (Set Receiver Frame Sequence number) command is received from FormatCommand
process, the controller builds a type BC frame which contains the new sequence number and sends
the corresponding CLTU to TransmitCommand process where it is uplinked. The controller then
transitions to "Initializing with a BC Frame" state where it waits for the confirmation (by a CLCW
) of receipt of the current BC frame. Upon arrival of a CLCW which indicates the BC frame has
successfully onboard, the Fop protocol transitions to Fop Active state where normal commanding
procedure starts. When an exception occurs during the initialization process, Fop protocol
performs a shutdown and transitions to Fop initial state. When an Unlock command received from
FormatCommand process, the controller builds a type BC frame and sends the corresponding
CLTU to TransmitCommand process where it is uplinked. The controller then transitions to
"Initializing with a BC Frame" state where it waits for the confirmation (by a CLCW) of receipt of
the BC frame. Upon arrival of a CLCW which indicates the BC frame has successfully onboard,
the Fop protocol transitions to Fop Active state where normal commanding procedure starts. When
an exception occurs during the process, Fop protocol performs a shutdown and transitions to Fop
initial state where it waits for further direction from the operator. When a TerminateAdService
directive received from RMS, the controller shutdown the AD service. In Fop initial state, the
controller also accepts configuration change requests from RMS. Configuration change requests
may include following directives: "Set Fop Sliding Window Size" directive, "Set Ground
Transmitter Sequence Number " directive, "Set Transmission Limit" directive and "Set Time
Initial Value" directive etc. When those directive are received while Fop is in Initial state, the
corresponding actions will be taken and status will be returned to RMS.

The controller is in the "Initializing without BC Frame" state (S4) after receiving a
StartAdWithClcw directive while in the "Initial" (S6) state. A successful CLCW check will result
in a transmission to "Active" (S1) state where normal commanding procedure starts. When

 3-163 305-CD-045-001

exceptions or timeout occurs, the controller performs proper shutdown function and transitions
back to "Initial" state where it waits for further directive from authority.

The controller is in the "Initializing with BC Frame" state (S5) after receiving an Unlock command
or SetVr command while in the "Initial" state. A successful CLCW check will result in a
transmission to "Active" state (S1) where normal commanding procedure starts. When timeout
occurs while waiting for CLCWs and allowed retry is not exhausted, a retransmission is initiated.
When timeout occurs and allowed retry is exhausted, the controller performs a shutdown and
returns to "Initial" state (S6) where it waits for further directive form the authority.

Active state (S1) is the normal state of the protocol machine when there are no recent errors on the
link and no incidents have occurred leading to flow control problems. In the state, the controller
accepts request to transfer command data and CLCWs. Other directives are either flagged as errors
when they are not appropriate for the current state or simply ignored when they are not harmful to
the system. When a uplink command data request received from FormatCommand process, the
controller builds a type AD frame or BC frame depending on the passed command data type
according to the CCSDS standard. Once the frame is built, the controller builds the CLTU which
is sent to TransmitCommand process where it is uplinked. Before processing any new inputs, the
controller saves the current copy of AD or BC frame on the command sent queue. When a CLCW
arrives and indicates the current frame has received by the spacecraft, the controller deletes the
acknowledged frame from the command sent queue and send status to FormatCommand process.
In Fop Active state S(1), the controller also processes CLCWs. When a CLCW indicates several
frames have arrived on the spacecraft, the controller removes acknowledged commands from the
command sent queue. When CLCW arrives and with the retransmission flag on but wait flag off,
the controller initiates retransmission immediately and transitions to "Fop Retransmit Without
Wait State" S(2). When CLCW arrives and with both retransmission flag and wait flag on, the
controller transitions to "Fop Retransmit With Wait State" S(3). When time out happens while Fop
is in its Active state, if the allowed retry is not exhausted, the controller initiates the retransmission,
if the allowed retry is exhausted, the controller performs a shutdown and transitions to Fop Initial
State and waits for further direction from the operator.

The controller will be in "Retransmit Without Wait" state (S2) if it receives a CLCW with its
retransmission flag on but wait flag off while in Fop Active state. When a CLCW arrives and
acknowledges some frames, but retransmission is still on and wait flag is still off, the controller
removes the acknowledged frames from the command sent queue and initiates another
retransmission. If a CLCW arrives with both retransmission flag and wait flag turned off, the
controller transitions to Fop Active state S(1) after removal of the acknowledged frame. If a CLCW
arrives with its retransmission flag still on and also wait flag on, the controller transitions to "Fop
Retransmit With Wait" state S(3). When time out happens while Fop is in the "Retransmit Without
Wait" state, if allowed retry is not exhausted, another retransmission is initiated, if allowed retry is
exhausted, the controller performs a shutdown and transitions to Fop Initial state where it waits for
further direction from the operator.

 3-164 305-CD-045-001

The controller will be in "Retransmit With Wait" S(3), if it receives a CLCW with its
retransmission flag on and also wait flag on while in Fop Active state. When a CLCW arrives with
both retransmission and wait flag turned off, the controller transitions to Fop Active state after
removal of acknowledged frames from the command sent queue. If a CLCW arrives with its wait
flag still on, the controller will stay in this state. When a CLCW arrives with its retransmission flag
still on but wait flag off, the controller transitions to "Retransmit Without Wait " state,
retransmission starts there.

 3-165 305-C
D

-045-001

Fop Initial (S6)

do : waiting for inputs

do : initialize

Fop Active (S1)

do : waiting for inputs

do : initialize
exit / set timer

Initializing without BC Frame (S4)

do : waiting for CLCW

do : initialize
transmit BC frame

of type unlock
exit / set timer

Initialize with BC Frame (S5)

do : waiting for
BC frame receipt

confirmation

do : set V(S) = V(R)
set NNR = V(R)

transmit BC frame
of type set V(R)
exit / set timer

do : setFopVariables

do : comfirm
: cancel timer

do : Shutdown

do : delete
copy of BC frame

cancel timer

do : Shutdown

do : initiate
BC retran
smission

counter ++
exit / set timer

do : remove
acked frame

from sent queue
do : cancel timer

Retransmit without wait (S2)

Retransmit with wait (S3)

do : initiate
AD retran
smission

counter ++

do : remove
acked frame
from queue
do : initiate

AD rtran

do : remove
acked frames

do : Shutdown

do :Shutdown

do : shutdown

do : waiting for input

do : waiting for input

do : build packet
do : buildFrame

do : xmit
exit / set timer

do : contact
RMS

do : get DMS
address from the
name server and
initiate connection

do : access

do : remove
acked frames

do : remove
acked frames
InitAdRetran
counter ++

do : remove
acked frames

do : reomve
acked frames

CLCW arrives
[retran flag is ON

 and wait flag is OFF]

done

initiate AD service
with set V(R)

directive

initiate AD service
with unlock

directive

initiate AD service
with clcw check CLCW arrives

[retran flag = ON && wait flag = ON]

exceptions

set fop variables
(variable)

exceptions

initiate AD service
without clcw check time out

[counter<=limit]

done

time out
[counter > limit]

exceptions

CLCW indicates
new frame

acked

done

exceptions

exceptions

time out
[counter >limit]

CLCW indicates
BC frame
received

ChangeState

ignore

Change State

valid CLCW arrives

exceptions

time out

 1553B command or
 memory load packet

exceptio

clcw arrives
[some frame acked
retran flag is OFF
wait flag is OFF]

CLCW arrives
[some frame acked and

retran flag = ON and
wait flag = ON

connected

done

time out

CLCW arrives
[some frame acked and

 retran flag = OFF wait flag = OFF]

clcw arrives
[some frame acked and

retran flag = ON wait flag = OFF]

done

retran counter > limit

CLCW arrives
[retran flag = ON and

 wait flag becomes ON]

CLCW arrives
[no frame acked and
retran flag = ON and

wait flag = ON]

done

CLCW arrives
[no frame acked and

retran flag = ON
wait flag = OFF]

CLCW arrives
[retran flag = ON and

 wait flag becomes OFF]

done

time out
[counter <= limit]

start (RMS address)

exceptions

stop fop

ignore
unreleated
directives

reject invalid
inputs

terminate AD service
directive arrives

terminate AD
directive

RMS configuration info arrives

terminate
AD directive

Figure 3.3.4.11-1. FcCmCcsdsFop state diagram

 3-166 305-CD-045-001

3.3.5 FopCommand Data Dictionary

FcCmCcsdsFop

class FcCmCcsdsFop
This class is the controller of the FopCommand process. It establishes connections with other subsystems and command tasks
when initialized. It then starts the main event loop. When input arrives from outside, FcCmCcsdsFop interprets the message
and delegates the specific request to FcCmFopState. The request is processed by the current active state.

Public Functions

EcTVoid ChangeRole(RoleType myRole)

This member function sets attribute myRole to the passed type (Primary, Backup or Inactive). it also calls
FcCmFopState::ChangeRole to set the corresponding flag there.

EcTVoid ChangeState(FcCmFopState*)

When asked by FcCmFopState class, this member function sets myCurState pointer to next state.

EcTVoid Configuration(RWCString myConfigInfo)

This member function does all the necessary configuration stuff using information from the configuration file.

EcTVoid GetConfigSnapshot()

This member function delegates the get configuration snapshot request to my current state.

EcTInt Init(EcTInt argc, EcTChar** argv)

This routine initializes all the interfaces. It first initiates connection with RMS with passed arguments. Once connected,
it waits for configuration information from RMS. When configuration file name is received, it accesses the configuration
file via FoDsFile class. It then proceeds to config the controller with info from the file.

EcTVoid ProcessClcw(EcTUShortInt, EcTBoolean, EcTBoolean, EcTBoolean)

This member function delegates process CLCW request to my FcCmFopState class. How this request is processed
depends on current active state of the FcCmFopState class.

EcTVoid ProcessLoadPacket(RWCollectable myPacket)

This member function delegates process a memory load packet request to my current active state. How this request is
processed depends on which state is currently active.

EcTVoid ProcessRtCmd(RWCollectable myRtCmd)

This member function delegates process a real time

command request

to my current active state. How this request is processed depends on which state is currently active.

EcTVoid ResumeAdService()

This member function delegates the "Resume AD Service" request to FcCmFopState class. How this request is processed
depends on current active state.

EcTVoid Run()

This routine starts the main event loop of Fop process. It block waits on all system interfaces. When an input arrives at
any of these interfaces, the main event loop will be notified. It will direct the interface to handle the input message. The
interface, depending on the context of input, returns an instance of an FoFopRequest object. The FoFopRequest object
knows how to ask the controller to perform a specific action.

EcTVoid SelectCtiu(EcTUInt)

This member function delegate the select ctiu request to my current state

EcTVoid SetRetransmissionLimit(EcTUInt myLimit)

This member function delegates "Set Fop Retransmission Limit" request to my current active state.

 3-167 305-CD-045-001

EcTVoid SetTimeoutType(EcTBoolean myTimeoutType)

This member function delegates "Set Timeout Type" request to my current active state.

EcTVoid SetTimerInitialVal(EcTULongInt myT1Val)

This member function delegates "set timer initial value" request to my current active state.

EcTVoid SetVs(EcTUInt myNewVs)

This member function delegates the "set Transmitter Frame Sequence Number" request to FcCmFopState. The request is
processed by current active state.

EcTVoid SetWinWidth(EcTUInt myWinWidth)

This member function delegates the "Set Fop Sliding Window Width" request to my current active state.

EcTVoid ShutdownFop()

This member function sets myFopInEffect flag to FALSE;

EcTVoid StartAdWithClcwCheck()

This member function delegates RMS "Init AD Service with a CLCW check" request to my FcCmFopState class. How
this request will be processed depends on my current active state.

EcTVoid StartAdWithoutClcwCheck()

This member function delegates "init AD service without CLCW check" request to my FcCmFopState class. How this
request will be processed depends on which state is currently active.

EcTVoid StartFop()

This member function sets myFopInEffect flag to TRUE.

EcTVoid TerminateAdService()

This routine delegates the terminate AD service request to FcCmFopState. The request will be processed by the current
active state.

Private Data

enum myArchiveState

RWCString myConfigFile

This attribute identifies my configuration file name.

FcCmFopState* myCurState

This attributes identifies current Fop active state.

EcTUInt myDbId

This attribute identifies my data base ID.

FdEvEventLogger* myEventLog

This is my pointer to my event log handler FdEvEventLogger class.

EcTBoolean myFopInEffect

This attribute identifies if Fop protocol is running.

FoGnCmdFopFormatIF* myIfToCmdFormat

This is my pointer to FoGnCmdFopFormatIF class.

FoGnCmdFopGroundStationIF* myIfToGroundStation

This is my pointer to FoGnCmdFopGroundStationIF class.

FoGnCmdFopRmsIF* myIfToRms

This is my pointer to FoGnCmdFopRmsIF class.

 3-168 305-CD-045-001

enum myRole

EcTUInt myScId

This attribute identifies the spacecraft ID.

Private Types

enum

This attribute identifies my archive state.

Enumerators

OFF
ON

enum

This attribute identifies current string is real-time or a simulation.

Enumerators

RealTime
Simulation

enum

This attribute identifies current string is primary, backup or Inactive.

Enumerators

Backup
Inactive
Primary

FcCmFopActive

class FcCmFopActive
This class is a subclass of FcCmFopState. It implements the Fop active state specific behavior.

Base Classes

public FcCmFopState

Public Functions

EcTVoid HandleTimeout()

When timeout happens while I am in this state, the member function will be called.

EcTVoid ProcessClcw(EcTUShortInt, EcTBoolean, EcTBoolean, EcTBoolean)

This member function processes the incoming CLCWs.

EcTVoid ProcessLoadPacket(RWCollectable myPacket)

This member function defines the behavior of how Fop protocol processes a "transmit a memory load packet" request
while Fop is in its active state.

EcTVoid ProcessRtcmd(RWCollectable myRtCmd)

This member function defines the behavior of how Fop protocol processes a "transmit a real time command" request while
the protocol is in its active state.

FcCmFopInitial

class FcCmFopInitial
This is a subclass of FcCmFopState class. It implements the Fop Initial state specific behavior.

 3-169 305-CD-045-001

Base Classes

public FcCmFopState

Public Functions

EcTVoid HandleTimeout()

When timeout happens while Fop is in Initial (S6) state, this function will be called.

EcTVoid ProcessClcw(EcTUShortInt EcTBoolean, EcTBoolean, EcTBoolean)

This member function processes CLCWs while Fop in initial state.

EcTVoid ProcessLoadPacket(RWCollectable myPacket)

This member function defines the behavior of how the Fop protocol processes a "transmit a memory load packet" request
while Fop is in its initial state.

EcTVoid ProcessRtCmd(RWCollectable myRtCmd)

This member function defines the behavior of how Fop protocol processes a "transmit a real time command" request while
Fop is in initial state.

EcTVoid ResumeAdService()

This member function processes "Resume AD service" directive from RMS. It sets Fop current state to previously
suspended state.

EcTVoid SetVs(EcTUInt myNewVs)

This member function processes "Set transmitter sequence number" request from RMS. It sets myVs attribute to a passed
value.

EcTVoid StartAdWithClcwCheck()

This member function processes "Initial AD service with a CLCW check" request while Fop is in Initial State. It starts a
timer and wait for a valid CLCW to show up.

EcTVoid StartAdWithoutClcwCheck()

This member function processes "Init AD service without clcw check" directive from RMS. It sets Fop protocol to its
active state and command procedure begins immediately.

FcCmFopInitializeWithBc

class FcCmFopInitializeWithBc
This class is a subclass of FcCmFopState. It implements the "Fop Initializing With BC frame" state specific behavior.

Base Classes

public FcCmFopState

Public Functions

EcTVoid HandleTimeout()

When timeout happens while I am in this state, this member function will be called.

EcTVoid ProcessClcw(EcTUShort EcTBoolean, EcTBoolean, EcTBoolean)

This member function defines the behavior of how Fop protocol processes a CLCW while it is in its "Fop Initializing With
BC frame" state.

EcTVoid ProcessLoadPacket(RWCollectable myPacket)

This member function defines the behavior of how Fop protocol processes a "transmit a memory load packet" request
while it is in its "Fop Initializing With BC Frame" state.

EcTVoid ProcessRtCmd(RWCollectable myRtCmd)

This member function defines the behavior of how Fop protocol processes a "transmit a real time command" request while
the fop protocol is in the "Fop Initializing With BC Frame" state.

 3-170 305-CD-045-001

FcCmFopInitializeWithoutBc

class FcCmFopInitializeWithoutBc
This class is a subclass of FcCmFopState. It implements the "Fop Initializing Without BC frame" state specific behavior.

Base Classes

public FcCmFopState

Public Functions

EcTVoid HandleTimeout()

When timeout happens while I am in this state, this member function will be called.

EcTVoid ProcessClcw(EcTUShort EcTBoolean, EcTBoolean, EcTBoolean)

This member function processes a CLCW while Fop protocol is in "Fop Initializing Without BC frame" state.

EcTVoid ProcessLoadPacket(RWCollectable myPacket)

This member function defines the behavior of how Fop protocol processes a "transmit a memory load packet" request
while it is in its "Initializing Without BC Frame" state.

EcTVoid ProcessRtCmd(RWCollectable myRtCmd)

This member function defines the behavior of how Fop protocol processes "transmit a real time command" request while
it is in its "Initializing Without BC frame" state.

FcCmFopRxmitWithWait

class FcCmFopRxmitWithWait
This class is a subclass of FcCmFopState. It implements "Fop Retransmit with Wait" state specific behavior.

Base Classes

public FcCmFopState

Public Functions

EcTVoid HandleTimeout()

When timeout happens while fop protocol is in the "Fop Retransmit with Wait" state, this member function will be called.

EcTVoid ProcessClcw(EcTUShortInt, EcTBoolean, EcTBoolean, EcTBoolean)

This member function processes incoming CLCWs while the fop protocol is in the "Fop Retransmit with Wait" state.

EcTVoid ProcessLoadPacket(RWCollectable myPacket)

This member function defines the behavior of how the Fop protocol processes a "transmit a memory load packet" request
while Fop is in its "Retransmit with Wait" state. This function builds the load packet into a CCSDS frame format and put
the frame on the wait queue.

EcTVoid ProcessRtCmd(RWCollectable myRtcmd)

This member function defines the behavior of how the Fop protocol processes a "transmit a real time command" request
while the protocol is in its Retransmission with Wait state. Because Fop is in Retransmit with Wait state, this function
builds the new command into CCSDS frame format and puts it on the wait queue.

FcCmFopRxmitWithoutWait

class FcCmFopRxmitWithoutWait
This class is a subclass of FcCmFopState. It implements the "Fop Retransmit without Wait" state specific behavior.

 3-171 305-CD-045-001

Base Classes

public FcCmFopState

Public Functions

EcTVoid HandleTimeout()

When timeout happens while the protocol is in the "Fop Retransmit without Wait", this member function will be called.

EcTVoid ProcessClcw(EcTUShortInt EcTBoolean, EcTBoolean, EcTBoolean)

This member function processes CLCWs while the Fop protocol is in the "Fop Retransmit Without Wait" state.

EcTVoid ProcessLoadPacket(RWCollectable myPacket)

This member function defines the behavior of how the Fop protocol processes a "transmit a memory load packet" request
while the protocol is in its "Retransmission without Wait" state.

EcTVoid ProcessRtCmd(RWCollectable myRtCmd)

This member function defines the behavior of how the Fop protocol processes a "transmit real time command" request
while the Fop is in its "Retransmission without Wait" state.

FcCmFopState

class FcCmFopState
FcCmFopState represents the state of Fop protocol. It has six derived classes with each of them representing a different
operational Fop state. FcCmFopState class defines common interface for its six subclasses. It also defines common behavior
of the subsequently derived states. When FcCmFopState receives a request from FcCmCcsdsFop, it responds differently
depending on its current state.

Public Functions

EcTVoid AddFrameToSendQue()

This member function adds frame to myCmdSendQue before sends the corresponding cltu to command transmit process.

FcGnTcCltu BuildFrame(RWCollectable myCmdData)

This member function asks FcCmTcFrame class to build a 1553B command or a memory load packet into Type-AD or
Type-BC frame according to the CCSDS standard. It calls FcCmTcFrame::BuildFrame to actually build the frame.
FcCmTcFrame::BuildFrame is overloaded, therefor, with the passed argument properly casted, it knows to handle a
command in 1553B format or a memory load packet differently. This member function returns an instance of FcGnTcCltu.

EcTVoid ChangeRole(RoleType myRole)

This routine sets myRole to the passed value.

EcTInt Config(RWSet myParameterSet)

This member function gets the passed configuration parameter set and does configuration.

RWCString GetConfigSnapshot()

This routine saves my configuration parameters in a configuration file and notify RMS about the file.

virtual EcTVoid HandleTimeout()

This is a virtual function. It provides common interface for all subsequently derived classes.

EcTVoid Ignore()

Sometimes, it is not necessary to process the request that I've received. This method handles this kind of situation.

EcTInt Init(FcCmCcsdsFop* myFop, FoCdFopFormatProxy* myFormatProxy,
FoGnCmdFopRmsIF* myPtrToRms, FdEvEventLogger* myEventLog)

Initialize the fop states and interface pointers.

EcTVoid InitiateAdRetran()

this member function prepares for AD or BC frame retransmission.

 3-172 305-CD-045-001

EcTVoid InitiateFrameTransmit()

InitiateFrameTransmit()

This member function initiates the transmission of the first frame on the command send queue that has its To Be
Retransmitted flag on. If no frames are needed to be retransmitted, this member function initiates the transmission of a
new frame.

virtual EcTVoid ProcessClcw(EcTUShortInt, EcTBoolean, EcTBoolean,
EcTBoolean)

This is a virtual function. It provides common interface for all the subsequently derived classes.

virtual EcTVoid ProcessLoadPacket(RWCollectable myPacket)

This is a virtual function. It provides default behavior for how FcCmFopState processes a memory load packet. If
subsequent derived class wants to process a load packet differently, it should provides its own version of
ProcessLoadPacket function.

virtual EcTVoid ProcessRtCmd(RWCollectable myRtCmd)

This is a virtual function. It provides default behavior for how FcCmFopState processes a real time command. If
subsequent derived class wants to process a command differently, it should provide its own version of ProcessRtCmd
function.

EcTVoid RemoveAckedFrame()

This member function removes acked frames from command send queue.

virtual EcTVoid ResumeAdService()

This is a virtual function. It provides the default behavior for how the FcCmFopState handles the "Resume AD service"
request. The derived class FcCmFopInitial will override this function.

EcTVoid SelectCtiu(EcTUInt myCtiu)

This member function sets my attribute myCtiu.

EcTInt SetTimeHandler()

This member function sets a time out handler.

EcTVoid SetTimeoutType(EcTBoolean myTimeoutType)

This member function sets Fop's Timeout Type variable to a passed value.

EcTVoid SetTimerInitialVal(EcTULongInt myT1Val)

This member function sets Fop's T1 value to a passed number

EcTVoid SetTransmissionLimit(EcTUInt myLimit)

This member function sets Fop's Transmission limit variable to a passed number.

virtual EcTVoid SetVs(EcTUInt myNewVs)

This is a virtual function. It provides the default behavior for how the FcCmFopState handles the "set transmitter frame
sequence number" request. The derived class FcCmFopInitial will override this function

EcTVoid SetWinWidth(EcTUInt myWinWidth)

This member function sets Fop Sliding Window Width to a passed value.

EcTVoid Shutdown()

This routine is responsible for gracefully shutting down FOP whenever needed.

virtual EcTVoid StartAdWithClcwCheck()

This is a virtual function. It provides default behavior for how FcCmFopState processes a "Start AD Service With a
CLCW check" request. The derived class FcCmFopInitial will override this function.

virtual EcTVoid StartAdWithoutClcwCheck()

This is a virtual function. It provides the default behavior for how the FcCmFopState handles the
StartAdWithoutClcwCheck request. The derived class FcCmFopInitial should override this function.

 3-173 305-CD-045-001

EcTVoid StartTimer()

This member function starts system timer.

EcTVoid StopTimer()

This member function stops system timer.

EcTVoid TerminateAdService()

This routine terminates AD service gracefully and informs all the related parties about the termination.

EcTVoid TransmitFrame(FcGnTcCltu myCltu)

This member function does preparation for transmission, and sends a copy of cltu to command transmit task via its proxy.

Private Data

RWlistCollectablesQueue myCmdSentQue

This attribute contains all the transfer frames that have been uplinked but not CLCW verified.

RWlistCollectablesQueue myCmdWaitQue

This attribute contains one command that will be processed next.

enum myCtiu

FcCmTcFrame myCurFrame

This attribute identifies the current copy of type AD or BC frame.

FdEvEventLogger* myEventLog

This attribute is my pointer to Event log class FdEvEventLogger.

EcTUShortInt myExpectedAckSeqNo

This attribute identifies the Expected Acknowledgment Frame Sequence Number, NN(R). The NN(R) contains the value
of N(R) from the previous CLCW. NN(R) -1 is the value of the sequence number of the latest Type-AD frame which Fop
can guarantee has arrived safely.

FcCmCcsdsFop* myFop

This is my pointer to FcCmFopCcsdsFop class.

FcCdFopForamtProxy* myFormatProxy

This attribute identifies my pointer to Command Format task.

EcTUShortInt myFrameSeqNo

This attribute identifies my frame sequence number.

FoPsClientIF* myParaServerProxy

This is my pointer to parameter server.

FoGnCmdFopRmsIF* myPtrToRms

This attribute is my pointer to RMS subsystem.

enum myRole

enum myStoredLockoutFlag

enum myStoredRetranFlag

enum myStoredWaitFlag

EcTUInt mySuspendState

This attribute identifies Fop suspend state.

EcTBoolean myTimeoutType

This attribute the Fop Timeout Action, i.e. when timeout happens, what action Fop will take.

 3-174 305-CD-045-001

EcTULongInt myTimerInitialVal

this attribute identifies the timeout period.

enum myToBeRetranFlag

EcTUInt myTransmitCounter

This attribute identifies how many time a frame has been transmitted.

EcTUInt myTransmitLimit

This attribute identifies how many time Fop can retry.

FcCmCmdFopTransmitProxy* myTransmitProxy

This attribute identifies my pointer to Command Transmit task.

EcTUInt myVs

This attribute identifies grounder transmitter sequence number.

EcTUInt myWinWidth

This attribute identifies Fop Sliding Window Width.

Private Types

enum

This attribute identifies which CTIU identifier to use when build the Frames.

Enumerators

Backup
Primary

enum

This attribute identifies the current process is a backup, primary or Inactive.

Enumerators

Backup
Inactive
Primary

enum

This attribute identifies the a frame on the command send queue that must be retransmitted.

Enumerators

OFF
ON

enum

This attribute contains the value of the "Retransmit" flag from the previous CLCW.

Enumerators

OFF
ON

enum

This attribute contains the value of the "Wait" flag from the previous CLCW.

 3-175 305-CD-045-001

Enumerators

OFF
ON

enum

This attribute identifies the value of the "Lockout" flag from the previous CLCW.

Enumerators

OFF
ON

FcCmTcFrame

class FcCmTcFrame
This class is responsible for building transfer frame according to the CCSDS format.

Public Functions

FcCmTcCltu BuildCltu()

This member function calculates the cltu for the entire transfer frame. It creates an instance of FcCmTcCltu class.

EcTInt BuildFrame(FcGnFopPacketMsg myPacket)

This member function builds a memory load packet (in CCSDS packet format) into CCSDS frame format.

EcTInt BuildFrame(FcGnFopCmdMsg myRtCmd)

This member function builds a real time command (in 1553B format) into the CCSDS frame format;

EcTVoid SetUplinkStatus(EcTBoolean)

This member function sets myUplinkstatus attribute.

Private Data

EcTUChar* myCltu

This attribute identifies my cltu.

FcCmTcFrameCrc* myCrcPtr

This is my pointer to FcCmFrameCrc class.

EcTUChar* myFrame

This is the pointer to my transfer frame.

EcTUShortInt myFrameSeqNo

This attribute identifies the current frame sequence number.

enum myFrameType

FcCmTcFrameHeader* myHeaderPtr

This is my pointer to FcCmTcFrameHeader class.

FcCmTcFramePacket* myPacketPtr

This is my pointer to FcCmTcFramePacket class.

enum myToBeRetransmittedFlag

enum myUplinkStatus

Private Types

enum

This attribute identifies my transfer frame type.

 3-176 305-CD-045-001

Enumerators

AD
BC

enum

This attribute identifies up link status of my frame.

Enumerators

bad
good

enum

This attribute identifies if my frame need to be retransmitted.

Enumerators

off
on

FcCmTcFrameCrc

class FcCmTcFrameCrc
This class is responsible for calculating CRC code for frame.

Public Functions

EcTInt Build(EcTUChar*)

This member function calculates CRC code for frame.

EcTVoid BuildCrcTable()

This member function builds CRC table.

Private Data

EcTUInt myCrcPoly

This attribute identifies CRC generating poly.

EcTUInt* myCrcTable

This attribute identifies crctable.

EcTUInt myCrcVal

This attribute identifies final CRC value

EcTUchar* myFrame

This attribute identifies the TC frame.

FcCmTcFrameHeader

class FcCmTcFrameHeader
This class is responsible for building frame header.

Public Functions

EcTInt Build(EcTUChar*)

This member function builds the header

EcTUInt GetBits(EcTUInt, EcTUInt)

This member function gets number of bits from a given starting position.

 3-177 305-CD-045-001

EcTVoid SetBits(EcTUInt, EcTUInt)

This member function sets number of bits from a given starting position.

Private Data

EcTUChar* myBufferPtr

This attribute identifies the buffer pointer,

enum myBypassFlag

enum myControlCmdFlag

EcTUInt myCtiuIdentifier

This attribute identifies my ctiu

EcTUInt myLength

This attribute identifies my header length.

EcTUInt myOffSet

This attribute identifies my offset in my frame.

EcTUInt myScId

This attribute identifies my space craft Id.

EcTUShortInt mySequenceNo

This attribute identifies the current frame sequence number.

EcTUInt myVersionNo

This attribute defines the version number of the TC frame.

EcTUInt myVirtualChannelId

This attribute identifies virtual channel.

Private Types

enum

This attribute defines control command flag.

Enumerators

OFF
ON

enum

This attribute defines myBypassFlag which controls the application of "Frame Acceptance Checks".

Enumerators

OFF
ON

FcCmTcFramePacket

class FcCmTcFramePacket
This class is responsible for building frame data part.

Public Functions

EcTInt Build(EcTUChar*)

This member function builds frame data part.

 3-178 305-CD-045-001

Private Data

FcCmTcPacletData* myDataPtr

This is my pointer to FcCmTcPacketData class.

EcTUInt myLength

This attribute identifies my frame data length.

EcTUInt myOffset

This attribute identifies my data part offset from frame header.

FcCmTcPacketHeader* myPacketHdPtr

This is my pointer to FcCmPacketHeader class.

EcTUChar* myPacketPtr

This attribute identifies my packet.

FcCmTcPacketData

class FcCmTcPacketData
This class is responsible for building the packet data part.

Public Functions

EcTInt Build(EcTUChar*)

This member function builds packet data part,

Private Data

EcTUChar* myBufferPtr

this attribute identifies the buffer pointer.

EcTUInt myLength

This attribute identifies the length of my packet.

EcTUInt myOffset

This attribute identifies the offset from my packet header.

FcCmTcPacketHeader

class FcCmTcPacketHeader
This class is responsible for building packet header.

Public Functions

EcTInt Build(EcTUChar*)

This member function builds packet header.

EcTUInt GetBits(EcTUInt, EcTUInt)

This member function gets given umber of bits from a given starting point.

EcTVoid SetBits(EcTUInt, EcTUInt)

This member function sets given number of bits from

a given starting point.

Private Data

EcTUInt myApid

This attribute identifies application process identifier.

 3-179 305-CD-045-001

EcTUChar* myBufferPtr

This attribute identifies my buffer pointer.

EcTUInt myLength

This attribute identifies my packet length.

EcTUInt myOffset

This attribute identifies packet offset in the frame.

EcTUShortInt myPacketSeqNo

This attribute identifies packet sequence no.

EcTUInt myPacketType

This attribute identifies my packet type.

EcTUInt mySecondaryHeaderFlag

This attribute identifies Secondary Header flag

EcTUInt mySequenceFlag

This attribute identifies sequence flag

EcTUInt myVersionNo

This attribute identifies version member of a packet.

FcGnFormatProcessReq

class FcGnFormatProcessReq
This class provides a common interface for all the requests from FormatCommand subsystem.

Base Classes

public FoFopRequest

Public Functions

virtual EcTInt Execute(FcCmCcsdsFop* fop)

This member function provides a common interface for all requests and will be overridden by sub class method.

FcGnProcessLoadPacketReq

class FcGnProcessLoadPacketReq
This class defines a binding between "process load packet" request of FormatCommand process and the ProcessLoadPacket
operation of the controller.

Base Classes

public FcGnFormatProcessReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes the ProcessLoadPacket function of the controller.

Private Data

RWCollectable myPacket

This attribute identifies the load packet sent by FormatCommand process.

 3-180 305-CD-045-001

FcGnProcessRtCmdReq

class FcGnProcessRtCmdReq
This class defines a binding between "Process real time command" request of FormatCommand process and the ProcessRtCmd
operation of the controller class.

Base Classes

public FcGnFormatProcessReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes ProcessRtCmd function of the controller class.

Private Data

RWCollectable myRtCmd

This attribute identifies the real time command sent by FormatCommand process.

FoCmCCSDSFopProxy

class FoCmCCSDSFopProxy
This class is a proxy class that FopCommand process provides for FormatCommand process. FormatCommand process sends
real time commands and memory load packets to FopCommand class via this class.

Public Functions

EcTBoolean ProcessLoadPacket(EcTUChar*, EcTInt, FcTCdLoadStage, RWCString)

This member function asks FopCommand process to process a memory load packet.

EcTBoolean ProcessRtCmd(EcTUChar*, EcTInt, EcTBoolean)

This member function asks FopCommand process to process a real time command.

FoFopRequest

class FoFopRequest
The class FoFopRequest is an abstract class, it is not intended to be instantiated. It provides a common interface for all
subsequently derived classes.

Public Functions

virtual EcTInt Execute(FcCmCcsdsFop* fop)

This member function provides interface and will be overridden by sub class member function.

FoGnChangeRoleReq

class FoGnChangeRoleReq
This class defines a binding between "change operational state" request of RMS and the ChangeRole function of the controller
class.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes ChangeRole function of controller.

 3-181 305-CD-045-001

Private Data

RoleType myRole

This attribute identifies if the current string is in Primary, Backup or Inactive state.

FoGnCmdFopFormatIF

class FoGnCmdFopFormatIF
FoGnCmdFormatIF

This class facilitates the exchange of information between command Fop process and command format process

Public Functions

RWCollectable* HandleInput()

This routine reads message from input stream. Depends on the context of the input, It creates an instance of ProcessRtCmd
object or an instance of ProcessLoadPacket object, each object knows how to invoke certain actions of the controller.

EcTInt InitFormatIf(RWCString myFormatAddress)

This member function initializes Fop's interface to command format process.

Private Data

FdEvEventLogger* myEventLog

This attributes points to my event handle class FdEvEventLogger.

RWCString myFormatAddress

This attribute identifies the command format process address.

EcTInt myListenPort

This attribute identifies my listening port.

FoGnCmdFopGroundStationIF

class FoGnCmdFopGroundStationIF
This class facilitates the exchange of information between command fop process and the ground station.

Public Functions

RWCollectable* HandleInput()

This routine reads message from input stream. It returns an instance of FoGnProcessClcwReq which knows how to invoke
process clcw function of the controller.

EcTInt InitGroundStaionIF(RWCString)
EcTInt SetNotifier()

InitGroundStationIF

This member function initializes Fop's interface to ground station

Private Data

FdEvEventLogger* myEventLog

This attribute points to my event handle class FdEvEventLogger.

RWCString myGroundStationadd

This attribute identifies my ground station address.

 3-182 305-CD-045-001

FoGnCmdFopRmsIF

class FoGnCmdFopRmsIF
this class facilitates the exchanges of information between command fop process and RMS subsystem.

Public Functions

RWCollectable* HandleInput()

This routine reads message from input stream. Depends on the context of the input, it returns an instance of FoFopRequest
which will have intelligence to ask the controller to perform certain actions.

EcTInt Init(EcTInt argc, EcTChar** argv)

This routine initializes Fop's interface to RMS subsystem. It establishes the connection and registers the connection in an
event notifier.

EcTVoid SendStatus(RWCString)

This member function sends status back to RMS subsystem.

Private Data

FdEvEventLogger* myEventLog

this attribute gives this class the visibility to FdEvEventLogger Class

RWCString myRmsAddress

this attribute identifies the address of the RMS subsystem.

FoGnCmdFopRmsProxy

class FoGnCmdFopRmsProxy
This class is a proxy that FopCommand provides for RMS subsystem. RMS sends configuration related directives via this class.

Public Functions

EcTVoid ChangeRole(RoleType myRole)

This member function asks FopCommand process to change its operational state. (the state is identified as role in
FopCommand process, the role can be Primary, Backup or Inactive);

EcTVoid ConfigFopCommand(RWCString myConfigMsg)

This member function sends process configuration information to FopCommand process.

EcTVoid GetConfigSnapshot()

This member function asks FopCommand process to take a snap shot.

EcTVoid ResumeAd()

This member function asks FopCommand process to resume its AD service.

EcTVoid SelectCtiu(EcTUInt myCtiu)

This member function asks FopCommand process to set its CTIU to the passed value.

EcTVoid SetTimeInitialVal(EcTULongInt myT1Val)

This member function asks the FopCommand process to set its T1 initial value to the passed value.

EcTVoid SetTimeoutType(EcTBoolean myTimeoutType)

This member function asks the FopCommand process to set its timeout type value which specifies what action to take if
timeout happens.

EcTVoid SetTransmissionLimit(EcTUInt myLimit)

This member function asks the FopCommand process to set its transmission limit to the passed value.

 3-183 305-CD-045-001

EcTVoid SetVs(EcTUInt myVs)

This member function asks FopCommand process to set its ground transmitter frame sequence number to the passed value.

EcTVoid SetWinWidth(EcTUInt myWinWidth)

This member function asks the FopCommand process to set its sliding window width to the passed value.

EcTVoid ShutdownFop()

This member function asks the FopCommand process to shut down itself.

EcTVoid StartAdWithClcwCheck()

This member function asks FopCommand process to start AD service with a CLCW check.

EcTVoid StartAdWithoutClcw()

This member function asks FopCommand process to start AD service without a CLCW check.

EcTVoid TerminateAd()

This member function asks FopCommand process to terminate its AD service.

FoGnCmdFopTransmitProxy

class FoGnCmdFopTransmitProxy
This class facilitates the exchange information between FopCommand process and TransmitCommand process.

Public Functions

EcTBoolean SendCltu(FcGnTcCltu myCltu)

This member function will send cltu object to TransmitCommand process where the command will be uplinked.

FoGnGetConfigSnapshotReq

class FoGnGetConfigSnapshotReq
This class defines a binding between RMS "Get Configuration snapshot" request and the GetConfigSnapshot operation of
FcCmCcsdsFop class.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes the GetConfigSnapshot operation of FcCmCcsdsFop class.

Private Data

RWCString myFileName

This attribute identifies the configuration file name.

FoGnProcessClcwReq

class FoGnProcessClcwReq
This class does preliminary CLCW process. It then requests FcCmCcsdsFop to take certain action based on its current state.

 3-184 305-CD-045-001

Base Classes

public FoFopRequest

Public Functions

EcTVoid ArchiveClcw()

This member function archives CLCW to a file on an hourly basis.

EcTInt DeComClcw()

This member function decommutate CLCW.

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes ProcessClcw function of FcCmCcsdsFop.

EcTInt ValidateClcw()

Validate

This member function validates CLCW bit pattern according to CCSDS standard.

Private Data

EcTUInt myCurClcw

This attribute identifies my CLCW.

EcTBoolean myLockFlag

This attribute identifies the lock out flag of a CLCW. When this flag is on, all subsequent type A BC frames are rejected.

EcTUShortInt myNextExpectedSeqNo

This attribute identifies FARM's next expected frame sequence number.

EcTBoolean myRetranFlag

This attribute identifies the retransmission flag of a CLCW. When this flag is on, retransmission is required.

EcTBoolean myWaitFlag

This attribute identifies the wait flag of a CLCW. When the flag is on, this indicates the spacecraft is unable to pass data
to the higher layer.

FoGnResumeAdServiceReq

class FoGnResumeAdServiceReq
This class defines a binding between "Resume AD Service" request and the ResumeAdService operation of my controller.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes the ResumeAdService operation of FcCmCcsdsFop class.

EcTInt SetSuspendState(EcTUInt myState)

This member function sets attribute mySuspendState to passed value.

Private Data

EcTUInt mySuspendState

This attribute identifies Fop suspend state.

 3-185 305-CD-045-001

FoGnRmsReq

class FoGnRmsReq
This class provides a common interface for all subsequently derived RMS request classes.

Base Classes

public FoFopRequest

Public Functions

virtual EcTInt Execute(FcCmCcsdsFop* fop)

This member function provides a common interface for all RMS requests and will be overridden by sub class method.

EcTInt SetDirective()

This member function sets myDirective to the incoming one.

Private Data

RWCString myDirective

This attribute identifies the received directive

FoGnSelectCtiu

class FoGnSelectCtiu
This class defines a binding between RMS "select ctiu" request and SelectCtiu operation of FcCmCcsdsFop class.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes SelectCtiu operation of FcCmCcsdsFop class.

Private Data

EcTUInt myCtiu

This attribute identifies my ctiu

FoGnSetRetransmissionLimitReq

class FoGnSetRetransmissionLimitReq
This class defines a binding between "Set Retransmission Limit" request and SetRetransmissionLimit operation of my
controller class.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes SetRetransmissionLimit operation of my controller class through passed pointer.

EcTInt SetRetransmissionLimit(EcTUInt myLimit)

This member function sets data member value.

 3-186 305-CD-045-001

Private Data

EcTUInt myLimit

This attribute identifies transmission limit of Fop.

FoGnSetTimeInitialValReq

class FoGnSetTimeInitialValReq
This class defines a binding between "Set Timer Initial Value" request and SetTimerInitialVal operation of my controller class.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes SetTimerInitialVal operation of my controller class through passed pointer.

EcTInt SetTimeIitialVal(EcTULongInt myT1Val)

SetTimeInitialVal

This member function sets myT1Val attribute to passed value.

Private Data

EcTULongInt myT1Val

This attribute identifies my initial timeout value.

FoGnSetTimeoutTypeReq

class FoGnSetTimeoutTypeReq
This class defines a binding between "Set Timeout Type" request and SetTimeoutType method of FcCmCcsdsFop class.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes SetTimeoutType operation of my controller class through passed pointer.

EcTInt SetTimeoutType(EcTBoolean myTimeoutType)

This member function sets myTimeoutType attribute.

Private Data

EcTBoolean myTimeoutType

This attribute identifies what action fop will take when timeout happens.

FoGnSetVsReq

class FoGnSetVsReq
This class defines a binding between "Set Transmitter Frame Sequence Number" request and SetVs operation of my controller.

 3-187 305-CD-045-001

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes SetVs function of controller class.

EcTInt SetVs(EcTUInt myVs)

This member function sets attribute myNewVs to passed value.

Private Data

EcTUShortInt myNewVs

This attribute identifies my new transmitter frame sequence number.

FoGnSetWinWidthReq

class FoGnSetWinWidthReq
This class defines a binding between "Set Fop Sliding Window Width" request and SetWinWidth operation of my controller.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes SetWinWidth operation of the controller class through passed pointer.

EcTInt SetWinWidth(EcTUInt myWinWidth)

This member function sets myWinWidth attribute to the passed value.

Private Data

EcTUInt myWinWidth

This attribute identifies Fop Sliding Window Width.

FoGnShutdownFopReq

class FoGnShutdownFopReq
This class defines a binding between RMS request "shot down" and FcCmCcsdsFop::ShutdownFop member function.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes FcCmCcsdsFop::ShutdownFop function of the controller.

FoGnStartAdWithClcwCheckReq

class FoGnStartAdWithClcwCheckReq
This class defines a binding between RMS directive "Start AD Service with a CLCW check" and StartAdWithClcwCheck
method of FcCmCcsdsFop class.

 3-188 305-CD-045-001

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes StartAdWithClcwCheck method of the controller class.

FoGnStartAdWithoutClcwReq

class FoGnStartAdWithoutClcwReq
This class defines a binding between RMS directive "Init Ad service without clcw check" request and
StartAdWithoutClcwCheck operation of FcCmCcsdsFop class.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes StartAdWithoutClcwCheck operation of FcCmCcsdsFop class.

FoGnTerminateAdReq

class FoGnTerminateAdReq
This class defines a binding between RMS "Terminate AD Service" request and TerminateAdService operation of
FccmCcsdsFop.

Base Classes

public FoGnRmsReq

Public Functions

EcTInt Execute(FcCmCcsdsFop* fop)

This member function invokes TerminateAdService operation of FcCmCcsdsFop class.

 3-189 305-CD-045-001

3.4 TransmitCommand Description
The TransmitCommand process receives Command Link Transfer Units (CLTUs) from the
FopCommand process and sends them to EDOS at a data rate corresponding to the current uplink
bandwidth (10, 2, 1 or .125 kbps). TransmitCommand uses the uplink path as defined by the
channel (SSA, SMA, S-Band) and spacecraft antenna (HighGain, Omni) to determine the data
rate.

3.4.1 TransmitCommand Context Description

The context diagram in Figure 3.4.1-1 depicts the data flows between the Transmit Command
process, the internal EOC and external ground system components. Descriptions of data flows are
summarized for each component:

FOS Resource Management Subsystem (RMS): RMS starts the TransmitCommand
process running as part of a logical string and then supplies EOC spacecraft contact and
commanding session configuration information. This information includes address of
RMS Subsystems, and TransmitCommand database ID, spacecraft ID, state (i.e., primary
or backup), operational mode (real-time or simulation), addresses of the Parameter Server
and the FopCommand process. Additionally, it is responsible for managing archive
mode (on, off) and uplink path configuration directives (which specify the channel
and spacecraft antenna being used) from User Interface in a manner that insures the
backup TransmitCommand task will be properly configured (i.e., "hot") to take over
processing in the event of a failure scenario involving the primary TransmitCommand
process.

FOS Data Management Subsystem (DMS) : This subsystem receives, stores and
forwards to appropriate subsystems the TransmitCommand event messages, and uplinked
commands (CLTUs). Configuration files, both standard-startup and snapshot, are written
to and read from the DMS. The configuration file includes the uplink path information
(Channel and current spacecraft Antenna specification), and command archive
information (Archive State).

Parameter Server: The parameter server is responsible for distributing new parameter
values (i.e., ground telemetry) to those processes which have requested (i.e.,registered) to
be informed of updates as values change. Specifically, this is the mechanism which
enables the User Interface subsystem to maintain its workstation displays of Uplink Rate
and Mode, Antenna Specification, Archive Filename, Archive State, and Channel
Specification. TransmitCommand provides these values to the parameter server as they
change. The parameter server, in turn, forwards the new values to those processes which
have requested to be kept updated with parameter values.

EDOS : The TransmitCommand process meters out commands to EDOS for uplink to
the spacecraft.

FopCommand: The FopCommand process forwards CLTUs to the TransmitCommand
process for metering to EDOS.

 3-190 305-C
D

-045-001

EDOS

Parameter
Server

FopCommand

FOS Resource
Management Subsystem

FOS Data Management
Subsystem

TransmitCommand

This System

CLTUs

Config
Info

CLTUs

Ground
Telemetry

CLTUs

Config
info

requests

Config
Info

Config
Snapshot
Request

status Reconfig
info

requests

Figure 3.4.1-1. TransmitCommand Context Diagram

 3-191 305-CD-045-001

3.4.2 TransmitCommand Interfaces

Table 3.4.2. TransmitCommand Interfaces (1 of 2)

Interface
Service

Interface
Class

Interface Class
Description

Service
Provider

Service
User

Frequency

Send
CLTUs to
EDOS

FoGnCmd
Ground
StationIF

Send binary com-
mands to EDOS

CMD:
Transmit

CMD:
Transmit

once per
command

Receives
CLTUs

FcCm
CCSDSFop
IF

Receives
CLTUs from the
FopCommand task

CMD:
Transmit

CMD:
Fop

once per
command

FcGnTcCltu Message class for a
CLTU

I/O FoDsFile Provides file access DMS:
FoDsFile
Manager

CMD:
Transmit

once per
command

Provide
Configur-
ation
Info

FoGnCmd
Transmit
RmsIF

Receive directives
(other than
commands)

CMD:
Transmit

RMS:
String
Manager

< 2 x (twice
per string
configurati
on + once
per pass)

FoGnRms
Config
Msg

Contains config
info for the
TransmitCommand

FoGnRms
Archive
Msg

Allows for setting of
the archive state
(enable/disable)

FoGnRms
Specify
Channel
Msg

Configure to
accommodate the
channel in the
uplink path

FoGnRms
Specify
Antenna
Msg

Configure to
accommodate the
antenna used in the
uplink path

 3-192 305-CD-045-001

Interface
Service

Interface
Class

Interface Class
Description

Service
Provider

Service
User

Frequency

FoGnRms
Channel
Antenna
Msg

Configure for both
channel & antenna
used in uplink path

FoGnRms
Primary
ModeMsg

Configure task as
either the primary or
backup task

FoGnRms
Shutdown
Msg

Process will
terminate itself, in
an orderly manner

FoGnRms
ReadSnap
ShotMsg

Configure from a
snapshot
(nominally in
backup mode)

FoGnRms
SaveSnap
ShotMsg

Take a snapshot
(nominally in
primary mode)

FoGnRms
Transmit
AckMsg

Acknowledges any
of the above RMS
messages

Provides
access to
data
values

FoGn
Parameter
Server

Distribution of
updated values to
other processes

Parameter
Server

CMD:
Transmit

~10x per r/t
command

Event
Logging

FdEvEvent
Logger

Provides routing
and archiving of
events messages

DMS:
FdEvEvent
Archiver

CMD:
Transmit

Once per r/
t cmd,
twice per
load

Table

3.4.2. TransmitCommand Interfaces (2 of 2)

 3-193 305-CD-045-001

3.4.3 TransmitCommand Object Model Description

The design scope for the TransmitCommand process Object Model (Figure 3.4.3-1) is the sending
of commands to a single EOS spacecraft. Support for multiple spacecrafts / simulators (i.e.,
multiple logical strings) results in multiple instances of this model.

The FcCmTransmitController class controls the timing of the commands being sent. It is
responsible for initialization of the TransmitCommand process. Commands, in CLTU format, are
received from the FopCommand process via the FcCmCCSDSFopIF class. The
FcCmTransmitController's role is to queue all received commands and to meter them out to the
FoGnCmdGroundStationIF class.

The FcCmTransmitQueue class is a container class that contains instances of the FcCmTcCltu
class. The FcCmTcCltu class contains the command in CLTU format and its size.

The RMS Interfaces for TransmitCommand are shown in Figure 3.4.3-2. The class
FoGnRmsTransmitProxy represents the proxy of the TransmitCommand process to the RMS
subsystem. The RMS subsystem uses this proxy to sends config info and directives to the
TransmitCommand process. It also receives ack back from the TransmitCommand via the
operation GetMessage of this proxy. The class FoGnCmdTransmitRmsIF is the interface class
between the TransmitCommand process and the RMS subsystem. This class is used by the
TransmitCommand to receive messages from and send ack message to RMS.

The messages that are sent from RMS to TransmitCommand process are represented by the classes:
FoGnRmsConfigMsg, FoGnRmsArchiveMsg, FoGnRmsSpecifyChannelMsg,
FoGnRmsSpecifyAntennaMsg, FoGnRmsChannelAntennaMsg, FoGnRmsPrimaryModeMsg,
FoGnRmsShutdownMsg, FoGnRmsReadSnapshotMsg and FoGnRmsSaveSnapshotMsg.

The ack message from TransmitCommand to RMS is handled by the class
FoGnCmdTransmitAckMsg.

The class FoGnCmdFopTransmitProxy (Figure 3.4.3-3) represents the proxy used by
FopCommand process to send messages to TransmitCommand process. The message here is an
instance of the FcGnTcCltu class. At the other end, TransmitCommand process uses
FcCmCCSDSFopIF to receive messages from FopCommand.

 3-194 305-C
D

-045-001

FoDsFile
FcCmCCSDSFopIF FoGnCmdGroundStationIF

FcCmTransmitController

FcCmTransmitQueue

FcCmTransmitQueue()
~FcCmTransmitQueue()

append(RWCollectable* cltu)

get()
isEmpty()

FdEvEventLogger

FcGnTcCltu

GenEvent(RWCString* msg)

FoGnCmdGroundStationIF()
~FoGnCmdGroundStationIF()
Send(RWCString* Cltu)

FcCmCCSDSFopIF()
~FcCmCCSDSFopIF()
GetCltu()

FoGnCmdTransmitRmsIF

myMessage

FoGnCmdTransmitRmsIF()
~FoGnCmdTransmitRmsIF()
PutMessage(RWCollectable* msg)
GetMessage()

myFilename
myType

Write()
Read()
Close()
Open()

FoPsClientIF

myAddress
myParameterTable

RegisterClient(Cid,Address,Mode,PidList)
UpdateParameters(PidBuffer)
UnregisterClient(Cid)
UpdateInterests(Cid,PidList)

myCltuSize
myCltu
myLoadId
myCltuType

FcGnTcCltu()
~FcGnTcCltu()
isEqual(RWCollectable* Cltu)
GetCltu(RWCString* Cltu)
SetCltu(RWCString* Cltu)
SetCltuSize(EcTUInt size)
GetCltuSize()
GetLoadId(RWCString* LoadId)
SetLoadId(RWCString* LoadId)
SetCltuType(enum CltuType)
GetCltuType()

/myMode
/myRate
myAntenna
myArchiveFile
myArchiveState
myChannel
myDmsIF
myFopIF
myNumTransmitCltu
myFreeNumBits
myParamServer
myGroundStationIF
myArchiveHour
myPrimaryMode
mySpacecraftId
myLastTransmitTime
myMaxBitsAllowed
myRmsIF
myRunFlag
myState
myTimer
myOperationMode
myTransmitQueue

~FcCmTransmitController()
FcCmTransmitController()
Init()
ProcessFopMsg(RWCollectable* FopMsg)
ProcessRmsMsg(RWCollectable* RmsMsg)
ReadSnapshot(RWCString* filename)
Run()
Shutdown()
SaveSnapshot(RWCString* filename)
OpenArchiveFile()
Transmit()

{shared - FDM with all S/S}

 +
 +

 + : RWCollectable*

 + : RWCollectable*
 + : RWBoolean

 +
 +
 + : EcTVoid

 +
 +
 + : RWCollectable*

 - : RWCollectable

 +
 +
 + : EcTVoid
 + : RWCollectable*

 - : RWCString

 - : RWCString
 - : RWHashDictionary

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

 - : EcTUInt
 - : RWCString*
 - : RWCString*
 - : enum {RealTime, StartOfLoad,MiddleOfLoad,EndOfLoad}

 +
 +
 + : RWBoolean
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTUInt
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : enum

 - : enumerated {Normal, Contigency, Emergency,LowRate}
 - : EcTInt
 - : enumerated {HighGain, Omni}
 - : RWCString*
 - : enumerated {enable, disable}
 - : enumerated {SSA,SMA,SBand}
 - : FoGnCmdDmsIF*
 - : FcCmCCSDSIF*
 - : EcTInt
 - : EcTULongInt
 - : FoGnParamServer*
 - : FoGnCmdGroundStationIF*
 - : EcTInt
 - : enumerated {Active, Backup,Inactive}
 - : RWCString*
 - : time
 - : EcTULongInt
 - : FoGnCmdRmsIF*
 - : EcTBoolean
 - : enumerated {Wait_for_Cltu, Wait_for_Cltu_and_Timer}
 - : timer
 - : enumerated {RealTime, Simulation}
 - : RWSlistCollectableQueue

 +
 +
 + : EcTBoolean
 + : EcTVoid
 + : EcTVoid
 + : EcTBoolean
 + : EcTVoid
 + : EcTVoid
 + : EcTBoolean
 + : EcTBoolean
 + : EcTVoid

archive Provides Cltus

uplink CLTUs

stores and retrieves
CLTUs

Log Events

contains

provides config info

receives parameters update

Figure 3.4.3-1. TransmitCommand Object Diagram

 3-195 305-C
D

-045-001

RWCollectable

FoGnRmsArchiveMsg

FoGnRmsChannelAntennaMsg
FoGnRmsPrimaryModeMsg

FoGnRmsSnapshotMsg

FoGnRmsShutdownMsg

FoGnRmsSpecifyAntennaMsg
FoGnRmsSpecifyChannelMsg

FoGnRmsTransmitProxy

FoGnRmsReadSnapshotMsg FoGnRmsSaveSnapshotMsg

myChannel

FoGnRmsSpecifyChannelMsg()
~FoGnRmsSpecifyChannelMsg()
SetChannel(enum NewChannel)
GetChannel()

FoGnRmsShutdownMsg()
~FoGnRmsShutdownMsg()

myAntenna

FoGnRmsSpecifyAntennaMsg()
~FoGnRmsSpecifyAntennaMsg()
SetAntenna(enum NewAntenna)
GetAntenna()

FoGnRmsReadSnapshotMsg()
~FoGnRmsReadSnapshotMsg()

FoGnRmsSaveSnapshotMsg()
~FoGnRmsSaveSnapshotMsg()

myFilename

FoGnRmsSnapshotMsg()
~FoGnRmsSnapshotMsg()
SetFilename(RWCString* filename)
GetFilename(RWCString* filename)

myArchiveState

FoGnRmsArchiveMsg()
~FoGnRmsArchiveMsg()
SetArchiveState(enum NewState)
GetArchiveState()

myChannel
myAntenna

FoGnRmsChannelAntennaMsg()
~FoGnRmsChannelAntennaMsg()
SetChannelAntenna(enum NewChannel, enum NewAntenna)
GetChannelAntenna(enum NewChannel, enum NewAntenna)

FoGnCmdTransmitAckMsg

FoGnCmdTransmitRmsIF

myAckStatus

FoGnCmdTransmitAckMsg()
~FoGnCmdTransmitAckMsg()
SetStatus(EcTBoolean Status)
GetStatus()

PROXY, INTERFACE AND MESSAGES FOR THE COMMUNICATION
BETWEEN RMS AND CMD:TRANSMIT TASK

myMessage

FoGnCmdTransmitRmsIF()
~FoGnCmdTransmitRmsIF()
PutMessage(RWCollectable* msg)
GetMessage()

FoGnRmsConfigMsg

mySpacecraftId
myDbId
myPrimaryMode
myOperationMode
myParamServer
myCmdFopAddr

FoGnRmsConfigMsg()
~FoGnRmsConfigMsg()
GetConfig(SpacecraftId, DbId, PrimaryMode, OpMode, ParamServer, FopAddr)
SetConfig(SpacecraftId,DbId,PrimaryMode,OpMode,ParamServer,FopAddr)

myMessage

GetMessage()
Config(Spacecraftid,DbId,PrimaryMode,OpMode,ParamServer,CmdFop)
Archive(enum ArchiveState {enable,disable})
SpecifyChannel(enum NewChannel {SSA, SMA, S-Band})
SpecifyAntenna(enum NewAntenna {HighGain, Omni})
SpecifyChannelAndAntenna(enum NewChannel, enum NewAntenna)
ConfigurationSnapshotRequest(RWCString* filename)
ReadConfigurationSnapshot(RWCString* filename)
Shutdown()
FoGnRmsTransmitProxy()
~FoGnRmsTransmitProxy()
SelectPrimaryMode(enum NewPrimaryMode {Active, Backup,Inactive})

myPrimaryMode

FoGnRmsPrimaryModeMsg()
~FoGnRmsPrimaryModeMsg()
SetPrimaryMode(enum NewMode)
GetPrimaryMode()

 - : enum {SSA, SMA, SBand}

 +
 +
 + : EcTVoid
 + : enum

 +
 +

 - : enum {HighGain, Omni}

 +
 +
 + : EcTVoid

 + : enum

 +
 +

 +
 +

 - : RWCString*

 +
 +
 + : EcTVoid
 + : EcTVoid

 - : enum {enable, disable}

 +
 +
 + : EcTVoid
 + : enum

 - : enum {SSA,SMA,SBand}
 - : enum {HighGain, Omni}

 +
 +
 + : EcTVoid
 + : EcTVoid

 - : EcTBoolean

 +
 +
 + : EcTVoid
 + : EcTBoolean

 - : RWCollectable

 +
 +
 + : EcTVoid
 + : RWCollectable*

 - : RWCString*
 - : RWCString*

 - : enum {Active, Backup}
 - : enum {RealTime, Simulation}
 - : FoGnParamServer*
 - : FoGnCmdFop*

 +
 +
 + : EcTVoid
 + : EcTBoolean

 - : RWCollectable

 + : RWCollectable*
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 + : EcTBoolean
 +
 +
 + : EcTBoolean

 - : enum {active, backup,Inactive}

 +
 +
 + : EcTVoid
 + : enum

e

Figure 3.4.3-2. RMS / TransmitCommand I/F Object Diagram

 3-196 305-C
D

-045-001

FoGnCmdFopTransmitProxy

FcGnTcCltu

FoGnCmdFopTransmitProxy()
~FoGnCmdFopTransmitProxy()
SendCltu(FcGnTcCltu* Cltu): EcTBoolean

FcCmCCSDSFopIF

FcCmCCSDSFopIF()
~FcCmCCSDSFopIF()
GetCltu()

RWCollectable

PROXY, INTERFACE AND MESSAGE FOR THE
COMMUNICATION BETWEEN CMD:FOP AND

CMD:TRANSMIT TASKS.

myCltuSize
myCltu
myLoadId
myCltuType

FcGnTcCltu()
~FcGnTcCltu()
isEqual(RWCollectable* Cltu)
GetCltu(RWCString* Cltu)
SetCltu(RWCString* Cltu)
SetCltuSize(EcTUInt size)
GetCltuSize()
GetLoadId(RWCString* LoadId)
SetLoadId(RWCString* LoadId)
SetCltuType(enum CltuType)
GetCltuType()

 +
 +
 + : RWCollectable*

e

 - : EcTUInt
 - : RWCString*
 - : RWCString*
 - : enum {RealTime, StartOfLoad,MiddleOfLoad,EndOfLoad}

 +
 +
 + : RWBoolean
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTUInt
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : enum

Figure 3.4.3-3. FopCommand / TransmitCommand I/F Object Diagram

 3-197 305-CD-045-001

3.4.4 TransmitCommand Dynamic Model Description

The following are the TransmitCommand scenarios which are defined in this section.

Real-Time Command Transmission

Real-Time Load Transmission

Additionally, a state diagram for the TransmitCommand controller class is included.

3.4.4.1 Real-Time Command Transmission Scenario

3.4.4.1.1 Real-Time Command Transmission Abstract

The purpose of the "Real-Time Command Transmission" scenario is to describe the process by
which commands are metered to maximize bandwidth utilization.

Figure 3.4.4.1-1 is the event trace diagram which correspond to this scenario.

3.4.4.1.2 Real-Time Command Transmission Summary Information

Interfaces:

Data Management Subsystem

EDOS

FopCommand process

Stimulus:

The FopCommand process sends a CLTU to TransmitCommand.

Desired Response:

TransmitCommand forwards the CLTUs to EDOS, in a metered manner at a data rate of
.125, 1, 2 or 10 kbps, depending on the uplink path.

Pre-Conditions:

The command queue (i.e., FcCmCommandQueue) is empty, and there are no CLTUs in
transmission.

Post-Conditions:

The CLTUs have been successfully forwarded to EDOS.

3.4.4.1.3 Scenario Description

TransmitCommand receives a CLTU from FopCommand via FcCmCCSDSFopIF, and inserts it
into the FcCmTransmitQueue. TransmitCommand checks the number of bits currently in
transmission (by calculating the length of time since the last transmission, and the number of bits
trasmitted at that time) to see if sending out the CLTU would result in the uplink rate being
exceeded. Inasmuch as there are no commands in transmission, it is determined that the CLTU can
be sent at this time without exceeding the uplink rate. The CLTU is removed from
FcCmTransmitQueue and forwarded to EDOS via FoGnCmdGroundStationIF. The CLTU is
archived via FoDsFile and an event message is logged via FdEvEventLogger. The queue is now
empty, and the process is placed in a wait state until a message arrives.

TransmitCommand receives a second CLTU from FopCommand and inserts it into the

 3-198 305-CD-045-001

FcCmTransmitQueue. TransmitCommand checks the number of bits currently in transmission and
determines that sending an additional CLTU would cause the uplink rate to be exceeded, and so it
does not send the CLTU. A timer is set to expire at the time when the next CLTU can be sent out.
FcCmTransmitController waits for either 1) the next message or 2) the timer to expire.

TransmitCommand receives a third CLTU from FopCommand and inserts it into the
FcCmTransmitQueue. TransmitCommand returns to the wait state, waiting for either 1) the next
message, or 2) the timer to expire. In this state, all of the incoming CLTUs are inserted into the
queue. The timer expires. The next CLTU is removed from FcCmTransmitQueue and forwarded
to EDOS via FoGnCmdGroundStationIF. The CLTU is archived via FoDsFile and an event
message is logged via FdEvEventLogger.

The queue is not empty at this point. TransmitCommand checks the number of bits currently in
transmission and determines that it cannot send another CLTU to EDOS at this time without
exceeding the uplink rate. The timer is set again, and the process goes into the wait state waiting
for either 1) the next CLTU from the FopCommand process or 2) the timer to expire. This process
is repeated until the queue is once again empty.

 3-199 305-C
D

-045-001

FcCmCCSDSFopIF FcCmTransmitController FcCmTransmitQueue FoGnCmdGroundStationIF FdEvEventLoggerFoDsFile

:
:
:

determined CLTU can be sent out

Wait

set Timer

Wait

log event

Provides CLTU

Insert into queue

get CLTU

Transmit CLTU

Provides CLTU

queue determined not empty

queue determined empty

archive into file

Provides CLTU

Insert into queue

get CLTU

log event

archive into file

Provides CLTU

determine next CLTU
cannot be sent out

set timer

wait (continue)

provides CLTU

insert into queue

wait (continue)

Transmit CLTU

determine next CLTU
cannot be sent out

Timer expires

Figure 3.4.4.1-1. Real Time Command Transmission

 3-200 305-CD-045-001

3.4.4.2 Real-Time Load Transmission Scenario

3.4.4.2.1 Real-Time Load Transmission Abstract

The purpose of the "Real-Time Load Transmission" scenario is to describe the process by which
CLTUs representing a load are metered to maximize bandwidth utilization.

Figure 3.4.4.2-1 is the event trace diagram which correspond to this scenario.

3.4.4.2.2 Real-Time Load Transmission Summary Information

Interfaces:

Data Management Subsystem

EDOS

FopCommand process

Stimulus:

The FopCommand process sends the first CLTU from a load to TransmitCommand.

Desired Response:

TransmitCommand forwards the CLTUs to EDOS, in a metered manner at a data rate of
.125, 1, 2 or 10 kbps, depending on the uplink path.

Pre-Conditions:

The command queue (i.e., FcCmCommandQueue) is empty, and there are no CLTUs in
transmission.

Post-Conditions:

The CLTUs have been successfully forwarded to EDOS.

3.4.4.2.3 Scenario Description

TransmitCommand receives the first CLTU in a load sequence from FopCommand via
FcCmCCSDSFopIF, and inserts it into the FcCmTransmitQueue. TransmitCommand checks the
number of bits currently in transmission (by calculating the length of time since the last
transmission, and the number of bits transmitted at that time) to see if sending out the CLTU would
result in the uplink rate being exceeded. Inasmuch as there are no commands in transmission, it is
determined that the CLTU can be sent at this time without exceeding the uplink rate. The CLTU
is removed from FcCmTransmitQueue and forwarded to EDOS via FoGnCmdGroundStationIF.
The CLTU is archived via FoDsFile and an event message marking the start of the uplink of the
load is logged via FdEvEventLogger. The queue is now empty, and the process is placed in a wait
state until a message arrives.

TransmitCommand receives a second CLTU from FopCommand and inserts it into the
FcCmTransmitQueue. TransmitCommand checks the number of bits currently in transmission and
determines that sending an additional CLTU would cause the uplink rate to be exceeded, and so it
does not send the CLTU. A timer is set to expire at the time when the next CLTU can be sent out.
FcCmTransmitController waits for either 1) the next message or 2) the timer to expire.

 3-201 305-CD-045-001

TransmitCommand receives a third CLTU from FopCommand and inserts it into the
FcCmTransmitQueue. TransmitCommand returns to the wait state, waiting for either 1) the next
message, or 2) the timer to expire. In this state, all of the incoming CLTUs are inserted into the
queue. The timer expires. The next CLTU is removed from FcCmTransmitQueue and forwarded
to EDOS via FoGnCmdGroundStationIF. The CLTU is archived via FoDsFile. The Controller
recognizes that the CLTU is part of the load, and as such, does not log an event message for this
CLTU.

The queue is not empty at this point. TransmitCommand checks the number of bits currently in
transmission and determines that it cannot send another CLTU to EDOS at this time without
exceeding the uplink rate. The timer is set again, and the process goes into the wait state waiting
for either 1) the next CLTU from the FopCommand process or 2) the timer to expire. This process
is repeated for all CLTUs, except for the last CLTU in the load.

Eventually, the timer expires, and the next CLTU is removed from FcCmTransmitQueue and
forwarded to EDOS via FoGnCmdGroundStationIF. The CLTU is archived via FoDsFile. The
Controller recognizes that the CLTU is the last CLTU for the load, and an event message marking
the end of the uplink of the load is logged via FdEvEventLogger.

 3-202 305-C
D

-045-001

FcCmCCSDSFopIF FcCmTransmitController FcCmTransmitQueue FoGnCmdGroundStationIF FoDsFile FdEvEventLogger

.

.

.

[timer expired]

.

.

.

[repeat process]

Provides CLTU

inserts into queue

determined CLTU
can be sent out

get CLTU

provides CLTU

transmits CLTU

archives into file

recognizes start of load

log event

queue determined empty

wait

provides CLTU

insert into queue

determined next CLTU
cannot be sent out

set timer

wait

provides CLTU

insert into queue

provides CLTU

insert into queue

wait

wait

get CLTU

provide CLTU

transmit CLTU

archive into file

recogizes CLTU is within load

queue determined not empty

determined next CLTU
cannot be sent out

set timer

wait

get CLTU

provides CLTU

transmit CLTU
archive into file

recognizes end of load

log event

Figure 3.4.4.2-1. Real Time Load Command Transmission

 3-203 305-CD-045-001

3.4.4.3 FcCmTransmitController State Diagram Description

Once initialized, the FcCmTransmitController object enters Wait_for_Cltu state. In this state, it
can receive and process configuration and shutdown messages from RMS, and CLTUs from
CMD:Fop process. It only leaves this state for another state if it receives either a shutdown
message from RMS or CLTUs from CMD:Fop.

Upon receiving CLTUs from CMD:Fop in the Wait_for_Cltu state, the controller object inserts all
incoming CLTUs into FcCmTransmitQueue object. It then checks to see if it can forward any
CLTU to EDOS without exceeding the uplink rate. If it can, then the controller will leave this state
for the Transmit state. If it cannot, it will calculate the time that the next CLTU in the queue may
be sent. The controller then sets the timer accordingly and goes to the Wait_for_Cltu_and_Timer
state.

In the Transmit state, the controller sends as many CLTUs to EDOS as possible, without exceeding
bandwidth. Then, if the queue is empty, it returns to the Wait_for_Cltu state. Otherwise, it
calculates the time that it needs to wait before sending the next CLTU. It then sets the timer and
goes to the Wait_for_Cltu_and_Timer state.

In the Wait_for_Cltu_and_Timer state, the controller object receives CLTUs and messages from
other subsystems just like when it is in the Wait_for_Cltu state. The only difference is that, when
receiving CLTUs from CMD:Fop, it enqueues the CLTUs and waits for the timer to expire before
it can enter the Tranmit state.

In either the Wait_for_Cltu or Wait_for_Cltu_and_Timer state, upon receiving the shutdown
message from RMS, the controller object will enter the shutdown state, then exit.

 3-204 305-CD-045-001

Init

wait for
CLTU

Transmit

Wait for
CLTU and

Timer

Shutdown

STATE DIAGRAM FOR
COMMAND TRANSMISSION

PROCESS

Received start up
message from RMS

Received shutdown message

Queue is not empty/
Set Timer

Received CLTUs and
can send CLTUs out/

insert into queue

Received CLTUs and cannot
send CLTUs out/

insert into queue and
set timer

Received CLTUs/Insert into queue

Timer Expired

Queue is empty

Received
Shutdown
message

Figure 3.4.4.3-1. FcCmTransmitController state diagram

 3-205 305-CD-045-001

3.4.5 TransmitCommand Data Dictionary

FcCmCCSDSFopIF

class FcCmCCSDSFopIF
This class handles the exchange of information between the Transmit task and the Fop Command task.

Public Construction

FcCmCCSDSFopIF()

This member function is the default constructor

~FcCmCCSDSFopIF()

This member function is the destructor

Public Functions

RWCollectable* GetCltu(void)

This member function returns the pointer to the Cltu forwarded from Fop.

FcCmTransmitController

class FcCmTransmitController
This class is the controller class for the Command Transmit process. It is responsible for receiving CLTUs from Command Fop
process and uplink these CLTUs out at a specified transmission rate.

Public Construction

FcCmTransmitController()

This member function is the default constructor for the Transmit Controller.

~FcCmTransmitController()

This member function is the destructor for the Transmit Controller.

Public Functions

EcTBoolean Init(void)

This member function initializes the Transmit Controller.

EcTBoolean OpenArchiveFile(void)

This member function opens the file for archiving CLTUs. It uses the spacecraft ID, the operational mode (real time or
simulation) and time stamp (year,month,day,hour) for the archive file name.

EcTVoid ProcessFopMsg(FopMsg)

This member function accepts CLTUs from the command Fop task.

* If the current state is Wait_for_Cltu, it then determines if it

can send out a CLTU. If it can, it calls the Transmit function. Otherwise, it sets the timer to go off when a CLTU can be
sent out.

* If the current state is Wait_for_Cltu_and_Timer, it enqueues
all received CLTUs into the transmit queue.

EcTVoid ProcessRmsMsg(RmsMsg)

This member function processes directives from RMS process.

EcTBoolean ReadSnapshot(RWCString* filename)

This member function reads out the antenna, channel and archive state from the config file.

 3-206 305-CD-045-001

EcTVoid Run(void)

This member function waits for and receives messages from Fop or Rms.

EcTBoolean SaveSnapshot(RWCString* name)

This member function writes out the antenna, channel and archive state to the snapshot file.

EcTVoid Shutdown(void)

This member function does the cleanup job before the termination of the transmit process.

EcTVoid Transmit(void)

This member function sends out one CLTU at a time while it can. When it cannot send out any more CLTU and there are
still more CLTUs to be sent out, it will set the timer to go off at the time when it can send out the next CLTU .

Private Data

enumerated _myMode

myMode

This member variable is derived from myAntenna and myChannel. It contains the mode of the current transmission (e.g.
normal, contingency, emergency).

EcTInt _myRate

myRate

This member variable is derived from myAntenna and myChannel. It contains the current transmission rate.

enumerated myAntenna

This member variable contains the current antenna used in spacecraft receiving commands.

RWCString* myArchiveFile

This member variable points to the file used for archiving uplinked CLTUs.

EcTInt myArchiveHour

This member variable contains the hour when the archive file was opened.

enumerated myArchiveState

This member variable contains the state of archiving, i.e. On or Off.

enumerated myChannel

This member variable contains the uplink channel, e.g. SSA (S band single access), SMA (S band multiple access).

FoGnCmdDmsIF* myDmsIF

This member variable points to the interface to DMS .

FcCmCCSDSIF* myFopIF

This member variable points to the interface to Cmd:Fop task.

EcTULongInt myFreeNumBits

This member variable contains the number of bits that can be transmitted at the current time.

FoGnCmdGroundStationIF* myGroundStationIF

This member variable points to the interface to EDOS .

time myLastTransmitTime

This member variable contains the time of the last transmission.

EcTULongInt myMaxBitsAllowed

This member variable contains the size of the largest CLTU.

EcTInt myNumTransmitCltu

This member variable contains the number of Cltu in a load

 3-207 305-CD-045-001

enumerated myOperationMode

This member variable contains the current operational mode, e.g. real-time or simulation:

FoGnParamServer* myParamServer

This member variable points to the parameter server

enumerated myPrimaryMode

This member variable contains the state of the process, e.g. primary ,backup or inactive.

FoGnCmdRmsIF* myRmsIF

This member variable points to the interface to RMS.

EcTBoolean myRunFlag

This member variable contains the indicator telling the transmit controller object whether or not to stop the task.

RWCString* mySpacecraftId

This member variable contains the ID of the spacecraft.

enumerated myState

This member variable contains the current state of the transmit controller object (e.g. Wait_for_Cltu,
Wait_for_Cltu_and_Timer).

timer myTimer

This member variable contains the id of the timer.

RWSlistCollectableQueue* myTransmitQueue

This member variable points to the transmit queue.

FcCmTransmitQueue

class FcCmTransmitQueue
This class is derived from Rogue Wave RWSlistCollectableQueue class. It is a container class that contains CLTUs to be
uplinked.

Base Classes

public RWSlistCollectableQueue

Public Construction

FcCmTransmitQueue()

This member function is the default constructor.

~FcCmTransmitQueue()

This member function is the default destructor.

Public Functions

EcTBoolean append(RWCollectable* cltu)

This member function append one CLTU into the queue.

RWCollectable* get(void)

This member function get the next CLTU from the queue.

RWBoolean isEmpty(void)

This member function checks to see if the queue is empty.

 3-208 305-CD-045-001

FcGnTcCltu

class FcGnTcCltu
This class contains the message passed from Fop to Transmit task.

Public Construction

FcGnTcCltu(void)

This member function is the default constructor

~FcGnTcCltu(void)

This member function is the destructor.

Public Functions

GetCltuType(void)

This member function returns myCltuType

EcTVoid GetCltu(RWCString* Cltu)

This member function returns myCltu

EcTUInt GetCltuSize(void)

This member function returns myCltuSize

EcTVoid GetLoadId(RWCString* LoadId)

This member function returns the LoadId

EcTVoid SetCltu(RWCString* Cltu)

This member function sets myCltu attribute.

EcTVoid SetCltuSize(EcTUInt size)

This member function set myCltuSize

EcTVoid SetCltuType(CltuType)

This member function sets myCltuType

EcTVoid SetLoadId(RWCString* LoadId)

This member function sets the loadId

RWBoolean isEqual(RWCollectable* Cltu)

This member function is required by Rogue Wave but is not used here.

Private Data

RWCString* myCltu

This member variable contains the CLTU

EcTUInt myCltuSize

This member variable contains the size of the CLTU

enum myCltuType

Private Types

enum

This member variable contains the type of the CLTU (real-time, StartOfLoad, MiddleOfLoad or EndOfLoad)

 3-209 305-CD-045-001

Enumerators

EndOfLoad
MiddleOfLoad
RealTime
StartOfLoad

FoGnCmdFopTransmitProxy

class FoGnCmdFopTransmitProxy
This class implements the Transmit Proxy for the Fop task.

Public Construction

FoGnCmdFopTransmitProxy()

This member function is the default constructor

~FoGnCmdFopTransmitProxy()

This member function is the destructor

Public Functions

EcTBoolean SendCltu(FcGnTcCltu* Cltu)

Transmit This member function send the Cltu to Transmit task

FoGnCmdGroundStationIF

class FoGnCmdGroundStationIF

Public Construction

FoGnCmdGroundStationIF()

This member function is the default constructor

~FoGnCmdGroundStationIF()

This member function is the destructor.

Public Functions

EcTVoid Send(RWCString* Cltu)

This member function takes a CLTU and sends it out.

FoGnCmdTransmitAckMsg

class FoGnCmdTransmitAckMsg
This class implements the ack message sent from Cmd:Transmit task to Rms subsystem.

Public Construction

FoGnCmdTransmitAckMsg(void)

This is the default constructor.

~FoGnCmdTransmitAckMsg(void)

This is the destructor.

Public Functions

EcTBoolean GetStatus(void)

This member function returns myAckStatus

 3-210 305-CD-045-001

EcTVoid SetStatus(EcTBoolean Status)

This member function sets myAckStatus to status.

Private Data

EcTBoolean myAckStatus

This member variable contains the status.

FoGnCmdTransmitRmsIF

class FoGnCmdTransmitRmsIF
This class implements the interface from Cmd:Transmit task to Rms subsystem

Public Construction

FoGnCmdTransmitRmsIF(void)

This is the default constructor.

~FoGnCmdTransmitRmsIF(void)

This is the destructor.

Public Functions

RWCollectable* GetMessage()

This member function returns the address to the object message forwarded to this interface.

EcTVoid PutMessage(RWCollectable* msg)

This member function sends a RWCollectable object out.

Private Data

RWCollectable myMessage

The message that this interface holds

FoGnRmsArchiveMsg

class FoGnRmsArchiveMsg
This class contains the Archive message.

Public Construction

FoGnRmsArchiveMsg(void)

This member function is the default constructor

~FoGnRmsArchiveMsg(void)

This member function is the destructor.

Public Functions

GetArchiveState(void)

This member function returns the value of the attribute

EcTVoid SetArchiveState(NewState)

This member function set the attribute to NewState

 3-211 305-CD-045-001

Private Data

enum myArchiveState

Private Types

enum

This member variable contains the archive state

Enumerators

disable
enable

FoGnRmsChannelAntennaMsg

class FoGnRmsChannelAntennaMsg
This class contains the message to update Channel and Antenna

Public Construction

FoGnRmsChannelAntennaMsg(void)

This member function is the default constructor

~FoGnRmsChannelAntennaMsg(void)

This member function is the destructor

Public Functions

EcTVoid GetChannelAntenna(NewChannel, NewAntenna)

This member function returns the values of attributes.

EcTVoid SetChannelAntenna(NewChannel, NewAntenna)

This member function set the attributes to new values

Private Data

enum myAntenna

enum myChannel

Private Types

enum

This member variable contains the name of the antenna

Enumerators

HighGain
Omni

enum

This member variable contains the name of the channel

 3-212 305-CD-045-001

Enumerators

SBand
SMA
SSA

FoGnRmsConfigMsg

class FoGnRmsConfigMsg
This class contains the config message that Rms send to Cmd:Transmit.

Public Construction

FoGnRmsConfigMsg(void)

This member function is the default constructor.

~FoGnRmsConfigMsg(void)

This member function is the destructor.

Public Functions

EcTVoid GetConfig(RWCString* SpacecraftId, RWCString* DbId, enum(Active))

This member function returns all the config attributes.

Private Data

FoGnCmdFop* myCmdFopAddr

myFopAddr

This member variable contains the address of the Fop Task.

RWCString* myDbId

This member variable contains the database ID

enum myOperationMode

FoGnParamServer* myParamServer

This member variable contains the address of the parameter server.

enum myPrimaryMode

RWCString* mySpacecraftId

This member variable contains the Id of the spacecraft.

Private Types

enum

This member variable contains the operational mode of the process.

Enumerators

RealTime
Simulation

enum

This member variable contains the mode of the process.

 3-213 305-CD-045-001

Enumerators

Active
Backup

FoGnRmsPrimaryModeMsg

class FoGnRmsPrimaryModeMsg
This class contains the new Primary Mode.

Public Construction

FoGnRmsPrimaryModeMsg(void)

This member function is the default constructor.

~FoGnRmsPrimaryModeMsg(void)

This member function is the destructor.

Public Functions

GetPrimaryMode(void)

This member function returns the value of the attribute

EcTVoid SetPrimaryMode(NewMode)

This member function sets the value of the attribute

Private Data

enum myPrimaryMode

Private Types

enum

This member variable contains the mode of operation

Enumerators

active
backup

FoGnRmsReadSnapshotMsg

class FoGnRmsReadSnapshotMsg
This class is derived from FoGnRmsSnapshotMsg; it contains the name of the snapshot file.

Base Classes

public FoGnRmsSnapshotMsg

Public Construction

FoGnRmsReadSnapshotMsg(void)

FoGnRmsReadSnapshopMsg

This member function is the default constructor

~FoGnRmsReadSnapshotMsg(void)

This member function is the destructor.

 3-214 305-CD-045-001

FoGnRmsSaveSnapshotMsg

class FoGnRmsSaveSnapshotMsg
This class is derived from FoGnRmsSnapshotMsg; it contains the filename to save the snapshot.

Base Classes

public FoGnRmsSnapshotMsg

Public Construction

FoGnRmsSaveSnapshotMsg(void)

This member function is the default constructor

~FoGnRmsSaveSnapshotMsg(void)

This member function is the destructor

FoGnRmsShutdownMsg

class FoGnRmsShutdownMsg
This class contains the shutdown message via its type (isA relation)

Public Construction

FoGnRmsShutdownMsg(void)

This member function is the default constructor

~FoGnRmsShutdownMsg(void)

This member function is the destructor

FoGnRmsSnapshotMsg

class FoGnRmsSnapshotMsg
This is the base class for FoGnRmsReadSnapshotMsg and FoGnRmsSaveSnapshoMsg classes.

Public Construction

FoGnRmsSnapshotMsg(void)

FoGnRmsSnapshopMsg

This member function is the default constructor

~FoGnRmsSnapshotMsg(void)

This member function is the destructor.

Public Functions

EcTVoid GetFilename(RWCString* filename)

This member function returns the value of the attribute.

EcTVoid SetFilename(RWCString* filename)

This member function sets the value of the attribute

Private Data

RWCString* myFilename

This member variable contains the name of the snapshot file

 3-215 305-CD-045-001

FoGnRmsSpecifyAntennaMsg

class FoGnRmsSpecifyAntennaMsg
This class contains the Specify Antenna message.

Public Construction

FoGnRmsSpecifyAntennaMsg(void)

FoGnRMsSpecifyAntennaMsg

This member function is the default constructor.

~FoGnRmsSpecifyAntennaMsg(void)

~FoGnRMsSpecifyAntennaMsg

This member function is the destructor.

Public Functions

GetAntenna(void)

This member function returns the value of the attribute.

EcTVoid SetAntenna(NewAntenna)

This member function sets the value of the attribute.

Private Data

enum myAntenna

Private Types

enum

This member variable contains the name of the antenna

Enumerators

HighGain
Omni

FoGnRmsSpecifyChannelMsg

class FoGnRmsSpecifyChannelMsg
This class contains the Specify Channel message.

Public Construction

FoGnRmsSpecifyChannelMsg(void)

This member function is the default constructor.

~FoGnRmsSpecifyChannelMsg(void)

This member function is the destructor.

Public Functions

GetChannel(void)

This member function returns the value of the attribute.

EcTVoid SetChannel(NewChannel)

This member function sets the value of the attribute.

 3-216 305-CD-045-001

Private Data

enum myChannel

Private Types

enum

This member variable contains the channel name.

Enumerators

SBand
SMA
SSA

FoGnRmsTransmitProxy

class FoGnRmsTransmitProxy
This class is the class for Transmit Proxy for RMS task

Public Construction

FoGnRmsTransmitProxy(void)

This member function is the default constructor

~FoGnRmsTransmitProxy(void)

This member function is the destructor

Public Functions

EcTBoolean Archive(ArchiveState)

This member function creates an FoGnRmsArchiveMsg object and sets its attribute to that of the argument, then sends it
to Cmd:Transmit task

EcTBoolean Config(SpacecraftId, DbId, PrimaryMode, OpMode, ParamServer,
CmdFop)

This member function creates an FoGnRmsConfigMsg object and sets its attributes to those of the arguments, then sends
it to Cmd:Transmit

EcTBoolean ConfigurationSnapshotRequest(RWCString* filename)

This member function creates an FoGnRmsSaveSnapshotMsg object and sets its attribute to that of the argument, then
sends it to Cmd:Transmit task

RWCollectable* GetMessage()

Returns the pointer to the message

EcTBoolean ReadConfigurationSnapshot(RWCString* filename)

This member function creates an FoGnRmsReadSnapshotMsg object and sets its attribute to that of the argument, then
sends it to Cmd:Transmit task

EcTBoolean SelectPrimaryMode(NewPrimaryMode)

This member function creates an FoGnRmsPrimaryModeMsg object and sets its attribute to that of the argument, then
sends it to Cmd:Transmit task

EcTBoolean Shutdown(void)

This member function creates an FoGnRmsShutdownMsg object and sends it to the Cmd:Transmit task.

EcTBoolean SpecifyAntenna(NewAntenna)

This member function creates an FoGnRmsSpecifyAntennaMsg object and sets its attribute to that of the argument, then
sends it to Cmd:Transmit task

 3-217 305-CD-045-001

EcTBoolean SpecifyChannel(NewChannel)

This member function creates an FoGnRmsSpecifyChannelMsg object and sets its attribute to that of the argument, then
sends it to Cmd:Transmit task

EcTBoolean SpecifyChannelAndAntenna(NewChannel, NewAntenna)

This member function creates an FoGnRmsChannelAntennaMsg object and sets its attributes to those of the arguments,
then sends it to Cmd:Transmit task

Public Types

enum ArchiveState

Enumerators

disable
enable

enum NewAntenna

Enumerators

HighGain
Omni

enum NewChannel

Enumerators

S
SMA
SSA

enum NewPrimaryMode

Enumerators

Active
Backup

Private Data

RWCollectable myMessage

This member variable contains the received message .

AB-218 305-CD-045-001

Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridian) -- see EOS AM

Ao Availability

APID Application Identifier

ARAM Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
(formerly ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

CI Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

CODA Customer Operations Data Accounting

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

AB-219 305-CD-045-001

CRC Cyclic Redundancy Code

CSCI Computer software configuration item

CSMS Communications and Systems Management Segment

CSS Communications Subsystem (CSMS)

CSTOL Customer System Test and Operations Language

CTIU Command and Telemetry Interface Unit (AM-1)

DAAC Distributed Active Archive Center

DAR Data Acquisition Request

DAS Detailed Activity Schedule

DAT Digital Audio Tape

DB Data Base

DBA Database Administrator

DBMS Database Management System

DCE Distributed Computing Environment

DCP Default Configuration Procedure

DEC Digital Equipment Corporation

DES Data Encryption Standard

DFCD Data Format Control Document

DID Data Item Description

DMS Data Management Subsystem

DOD Digital Optical Data

DoD Department of Defense

DS Data Server

DSN Deep Space Network

DSS Decision Support System

e-mail electronic mail

Ecom EOS Communication

ECS EOSDIS Core System

EDOS EOS Data and Operations System

EDU EDOS Data Unit

EGS EOS Ground System

EOC Earth Observation Center (Japan);
EOS Operations Center (ECS)

EOD Entering Orbital Day

EON Entering Orbital Night

EOS Earth Observing System

AB-220 305-CD-045-001

EOSDIS EOS Data and Information System

EPS Encapsulated Postscript

ESH EDOS Service Header

ESN EOSDIS Science Network

ETS EOS Test System

EU Engineering Unit

EUVE Extreme Ultra Violet Explorer

FAS FOS Analysis Subsystem

FAST Fast Auroral Snapshot Explorer

FDDI Fiber Distributed Data Interface

FDF Flight Dynamics Facility

FDIR Fault Detection and Isolation Recovery

FDM FOS Data Management Subsystem

FMEA Failure Modes and Effects Analyses

FOP Frame Operations Procedure

FORMATS FDF Orbital and Mission Aids Transformation System

FOS Flight Operations Segment

FOT Flight Operations Team

FOV Field-Of-View

FPS Fast Packet Switch

FRM FOS Resource Management Subsystem

FSE FOT S/C Evolutions

FTL FOS Telemetry Subsystem

FUI FOS User Interface

GB Gigabytes

GCM Global Circulation Model

GCMR Global Circulation Model Request

GIMTACS GOES I-M Telemetry and Command System

GMT Greenwich Mean Time

GN Ground Network

GOES Geostationary Operational Environmental Satellite

GSFC Goddard Space Flight Center

GUI Graphical User Interface

H&S Health and Safety

H/K Housekeeking

HST Hubble Space Telescope

AB-221 305-CD-045-001

I/F Interface

I/O Input/Output

ICC Instrument Control Center

ICD Interface Control Document

ID Identifier

IDB Instrument Database

IDR Incremental Design Review

IEEE Institute of Electrical and Electronics Engineers

IOT Instrument Operations Team

IP International Partners

IP-ICC International Partners-Instrument Control Center

IPs International Partners

IRD Interface requirements document

ISDN Integrated Systems Digital Network

ISOLAN Isolated Local Area Network

ISR Input Schedule Request

IST Instrument Support Terminal

IST Instrument Support Toolkit

IWG Investigator Working Group

JPL Jet Propulsion Laboratory

Kbps Kilobits per second

LAN Local Area Network

LaRC Langley Research Center

LASP Laboratory for Atmospheric Studies Project

LEO Low Earth Orbit

LOS Loss of Signal

LSM Local System Manager

LTIP Long-Term Instrument Plan

LTSP Long-Term Science Plan

MAC Medium Access Control;
Message Authentication Code

MB Megabytes

MBONE Multicast Backbone

Mbps Megabits per second

MDT Mean Down Time

MIB Management Information Base

AB-222 305-CD-045-001

MISR Multi-angle Imaging Spectro-Radiometer

MMM Minimum, Maximum, and Mean

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS Moderate resolution Imaging Spectrometer

MOPITT Measurements Of Pollution In The Troposphere

MSS Management Subsystem

MTPE Mission to Planet Earth

NASA National Aeronautics and Space Administration

Nascom NASA Communications Network

NASDA National Space Development Agency (Japan)

NCAR National Center for Atmospheric Research

NCC Network Control Center

NEC North Equator Crossing

NFS Network File System

NOAA National Oceanic and Atmospheric Administration

NSI NASA Science Internet

NTT Nippon Telephone and Telegraph

OASIS Operations and Science Instrument Support

ODB Operational Database

ODM Operational Data Message

OMT Object Model Technique

OO Object Oriented

OOD Object Oriented Design

OpLAN Operational LAN

OSI Open System Interconnect

PACS Polar Acquisition and Command System

PAS Planning and Scheduling

PDB Project Data Base

PDF Publisher's Display Format

PDL Program Design Language

PDR Preliminary Design Review

PI Principal Investigator

PI/TL Principal Investigator/Team Leader

PID Parameter ID

PIN Password Identification Number

POLAR Polar Plasma Laboratory

AB-223 305-CD-045-001

POP Polar-Orbiting Platform

POSIX Portable Operating System for Computing Environments

PSAT Predicted Site Acquisition Table

PSTOL PORTS System Test and Operation Language

Q/L Quick Look

R/T Real-Time

RAID Redundant Array of Inexpensive Disks

RCM Real-Time Contact Management

RDBMS Relational Database Management System

RMA Reliability, Maintainability, Availability

RMON Remote Monitoring

RMS Resource Management Subsystem

RPC Remote Processing Computer

RTCS Relative Time Command Sequence

RTS Relative Time Sequence;
Real-Time Server

S/C Spacecraft

SAR Schedule Add Requests

SCC Spacecraft Controls Computer

SCF Science Computing Facility

SCL Spacecraft Command Language

SDF Software Development Facility

SDPS Science Data Processing Segment

SDVF Software Development and Validation Facility

SEAS Systems, Engineering, and Analysis Support

SEC South Equator Crossing

SLAN Support LAN

SMA S-band Multiple Access

SMC Service Management Center

SN Space Network

SNMP System Network Mgt Protocol

SQL Structured Query Language

SSA S-band Single Access

SSIM Spacecraft Simulator

SSR Solid State Recorder

STOL System Test and Operations Language

AB-224 305-CD-045-001

T&C Telemetry and Command

TAE Transportable Applications Environment

TBD To Be Determined

TBR To Be Replaced/Resolved/Reviewed

TCP Transmission Control Protocol

TD Target Day

TDM Time Division Multiplex

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

TIROS Television Infrared Operational Satellite

TL Team Leader

TLM Telemetry subsystem

TMON Telemetry Monitor

TOO Target Of Opportunity

TOPEX Topography Ocean Experiment

TPOCC Transportable Payload Operations Control Center

TRMM Tropical Rainfall Measuring Mission

TRUST TDRSS Resource User Support Terminal

TSS TDRSS Service Session

TSTOL TRMM System Test and Operations Language

TW Target Week

U.S. United States

UAV User Antenna View

UI User Interface

UPS User Planning System

US User Station

UTC Universal Time Code;
Universal Time Coordinated

VAX Virtual Extended Address

VMS Virtual Memory System

W/S Workstation

WAN Wide Area Network

WOTS Wallops Orbital Tracking Station

XTE X-Ray Timing Explorer

AB-225 305-CD-045-001

This page intentionally left blank.

GL-226 305-CD-045-001

Glossary

GLOSSARY of TERMS for the Flight Operations Segment

activity A specified amount of scheduled work that has a defined
start date, takes a specific amount of time to complete, and
comprises definable tasks.

analysis Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis
involves the processing of accumulated data obtained from
other verification methods.

attitude data Data that represent spacecraft orientation and onboard
pointing information. Attitude data includes:
o Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler
angles or quaternions, rates and biases, and associated
parameters.
o Attitude generated onboard in quaternion or Euler angle
form.
o Refined and routine production data related to the
accuracy or knowledge of the attitude.

availability A measure of the degree to which an item is in an operable
and committable state at the start of a "mission" (a
requirement to perform its function) when the "mission" is
called for an unknown (random) time. (Mathematically,
operational availability is defined as the mean time between
failures divided by the sum of the mean time between
failures and the mean down time [before restoration of
function].

GL-227 305-CD-045-001

availability
(inherent) (Ai)

The probability that, when under stated conditions in an
ideal support environment without consideration for
preventive action, a system will operate satisfactorily at any
time. The “ideal support environment” referred to, exists
when the stipulated tools, parts, skilled work force manuals,
support equipment and other support items required are
available. Inherent availability excludes whatever ready
time, preventive maintenance downtime, supply downtime
and administrative downtime may require. Ai can be
expressed by the following formula:

Ai = MTBF/ (MTBF + MTTR)

Where: MTBF = Mean Time Between Failures
MTTR = Mean Time To Repair

availability
(operational) (Ao)

The probability that a system or equipment, when used
under stated conditions in an actual operational
environment, will operate satisfactorily when called upon.
Ao can be expressed by the following formula:

Ao = MTBM / (MTBM + MDT + ST)

Where: MTBM = Mean Time Between Maintenance
(either corrective or preventive)
MDT = Mean Maintenance Down Time where
corrective, preventive administrative and
logistics actions are all considered.
ST = Standby Time (or switch over time)

A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating
long term plans (i.e., LTSP, LTIP, and long term spacecraft
operations plan).

build An assemblage of threads to produce a gradual buildup of
system capabilities.

calibration The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and
the spacecraft engineering data. It includes pre-flight
calibration measurements, in-flight calibrator
measurements, calibration equation coefficients derived
from calibration software routines, and ground truth data
that are to be used in the data calibration processing routine.

GL-228 305-CD-045-001

command Instruction for action to be carried out by a space-based
instrument or spacecraft.

command and data
handling (C&DH)

The spacecraft command and data handling subsystem
which conveys commands to the spacecraft and research
instruments, collects and formats spacecraft and instrument
data, generates time and frequency references for
subsystems and instruments, and collects and distributes
ancillary data.

command group A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed
execution, but are executed immediately upon reaching
their destination on board. For the U.S. spacecraft, from the
perspective of the EOS Operations Center (EOC), a
preplanned command group is preprocessed by, and stored
at, the EOC in preparation for later uplink. A real-time
command group is unplanned in the sense that it is not
preprocessed and stored by the EOC.

detailed activity
schedules

The schedule for a spacecraft and instruments which covers
up to a10 day period and is generated/updated daily based
on the instrument activity listing for each of the instruments
on the respective spacecraft. For a spacecraft and
instrument schedule the spacecraft subsystem activity
specifications needed for routine spacecraft maintenance
and/or for supporting instruments activities are
incorporated in the detailed activity schedule.

direct broadcast Continuous down-link transmission of selected real-time
data over a broad area (non-specific users).

GL-229 305-CD-045-001

EOS Data and
Operations System

(EDOS) production
data set

Data sets generated by EDOS using raw instrument or
spacecraft packets with space-to-ground transmission
artifacts removed, in time order, with duplicate data
removed, and with quality/ accounting (Q/A) metadata
appended. Time span or number of packets encompassed
in a single data set are specified by the recipient of the data.
These data sets are equivalent to Level 0 data formatted
with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with
quality and accounting information from each individual
packet and the data set itself and with essential formatting
information for unambiguous identification and subsequent
processing.

housekeeping data The subset of engineering data required for mission and
science operations. These include health and safety,
ephemeris, and other required environmental parameters.

instrument o A hardware system that collects scientific or operational
data.
o Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.
o An integrated collection of hardware containing one or
more sensors and associated controls designed to produce
data on/in an observational environment.

instrument activity
deviation list

An instrument's activity deviations from an
existinginstrument activity list, used by the EOC for
developing the detailed activity schedule.

instrument activity
list

An instrument's list of activities that nominally covers
seven days, used by the EOC for developing the detailed
activity schedule.

instrument
engineering data

subset of telemetered engineering data required for
performing instrument operations and science processing

instrument
microprocessor
memory loads

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads
could include microprocessor-stored tables,
microprocessor-stored commands, or updates to
microprocessor software.

GL-230 305-CD-045-001

instrument resource
deviation list

An instrument's anticipated resource deviations from
anexisting resource profile, used by the EOC for
establishing TDRSS contact times and building the
preliminary resource schedule.

instrument resource
profile

Anticipated resource needs for an instrument over a
targetweek, used by the EOC for establishing TDRSS
contact times and building the preliminary resource
schedule.

instrument science
data

Data produced by the science sensor(s) of an instrument,
usually constituting the mission of that instrument.

long-term
instrument plan
(LTIP)

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. It is generated or updated
approximately every six months and covers a period of up
to approximately 5 years.

long-term science
plan (LTSP)

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated
approximately every six months and covers a period of up
to approximately five years.

long term spacecraft
operations plan

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from
the Flight Dynamics Facility, spanning a period of several
months.

mean time between
failure (MTBF)

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly
or piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures/
operating time.

mean down time
(MDT)

Sum of the mean time to repair MTTR plus the average
logistic delay times.

mean time between
maintenance
(MTBM)

The mean time between preventive maintenance (MTBPM)
and mean time between corrective maintenance (MTBCM)
of the ECS equipment. Each will contribute to the
calculation of the MTBM and follow the relationship:
1/MTBM = 1/MTBPM + 1/MTBCM

mean time to repair
(MTTR)

The mean time required to perform corrective maintenance
to restore a system/equipment to operate within design
parameters.

GL-231 305-CD-045-001

object Identifiable encapsulated entities providing one or more
services that clients can request. Objects are created and
destroyed as a result of object requests. Objects are
identified by client via unique reference.

orbit data Data that represent spacecraft locations. Orbit (or
ephemeris) data include: Geodetic latitude, longitude and
height above an adopted reference ellipsoid (or distance
from the center of mass of the Earth); a corresponding
statement about the accuracy of the position and the
corresponding time of the position (including the time
system); some accuracy requirements may be hundreds of
meters while other may be a few centimeters.

playback data Data that have been stored on-board the spacecraft for
delayed transmission to the ground.

preliminary resource
schedule

An initial integrated spacecraft schedule, derived from
instrument and subsystem resource needs, that includes the
network control center TDRSS contact times and nominally
spans seven days.

preplanned stored
command

A command issued to an instrument or subsystem to be
executed at some later time. These commands will be
collected and forwarded during an available uplink prior to
execution.

principal
investigator (PI)

An individual who is contracted to conduct a specific
scientific investigation. (An instrument PI is the person
designated by the EOS Program as ultimately responsible
for the delivery and performance of standard products
derived from an EOS instrument investigation.)

prototype Prototypes are focused developments of some aspect of the
system which may advance evolutionary change.
Prototypes may be developed without anticipation of the
resulting software being directly included in a formal
release. Prototypes are developed on a faster time scale
than the incremental and formal development track.

GL-232 305-CD-045-001

raw data Data in their original packets, as received from the
spacecraft and instruments, unprocessed by EDOS.
o Level 0 – Raw instrument data at original resolution,
time ordered, with duplicate packets removed.
o Level 1A – Level 0 data, which may have been
reformatted or transformed reversibly, located to a
coordinate system, and packaged with needed ancillary and
engineering data.
o Level 1B – Radiometrically corrected and calibrated data
in physical units at full instrument resolution as acquired.
o Level 2 – Retrieved environmental variables (e.g., ocean
wave height, soil moisture, ice concentration) at the same
location and similar resolution as the Level 1 source data.
o Level 3 – Data or retrieved environmental variables that
have have been spatially and/or temporally resampled (i.e.,
derived from Level 1 or Level 2 data products). Such
resampling may include averaging and compositing.
o Level 4 – Model output and/or variables derived from
lower level data which are not directly measured by the
instruments. For example, new variables based upon a time
series of Level 2 or Level 3 data.

real-time data Data that are acquired and transmitted immediately to the
ground (as opposed to playback data). Delay is limited to
the actual time required to transmit the data.

reconfiguration A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s
objectives.

SCC-stored
commands and
 tables

Commands and tables which are stored in the memory of
the central onboard computer on the spacecraft. The
execution of these commands or the result of loading these
operational tables occurs sometime following their storage.
The term “core-stored” applies only to the location where
the items are stored on the spacecraft and instruments; core-
stored commands or tables could be associated with the
spacecraft or any of the instruments.

scenario A description of the operation of the system in user’s
terminology including a description of the output response
for a given set of input stimuli. Scenarios are used to define
operations concepts.

GL-233 305-CD-045-001

segment One of the three functional subdivisions of the ECS:
CSMS -- Communications and Systems Management
Segment
FOS -- Flight Operations Segment
SDPS -- Science Data Processing Segment

sensor A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.).
Science and engineering sensors are distinguished
according to the stimuli to which they respond.
 o Sensor name: The name of the satellite sensor which
was used to obtain that data.

spacecraft
engineering data

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

spacecraft
subsystems activity
list

A spacecraft subsystem's list of activities that nominally
covers seven days, used by the EOC for developing the
detailed activity schedule.

spacecraft
subsystems resource
profile

Anticipated resource needs for a spacecraft subsystem over
a target week, used by the EOC for establishing TDRSS
contact times and building the preliminary resource
schedule.

target of opportunity
(TOO)

A TOO is a science event or phenomenon that cannot be
fully predicted in advance, thus requiring timely system
response or high-priority processing.

thread A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

thread,

as used in
some Systems
Engineering
documents

A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion
of a scenario, or multiple scenarios.

toolkits Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
parallel with the ECS.

	1.��Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2.� Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced

	3. Command Subsystem
	3.1 Command Context Description
	3.2 FormatCommand Description
	3.2.1 FormatCommand Context Description
	3.2.2 FormatCommand Interfaces
	3.2.3 FormatCommand Object Model Description
	3.2.4 FormatCommand Subsystem Dynamic Model
	3.2.5 FormatCommand Data Dictionary

	3.3 FopCommand Description
	3.3.1 FopCommand Context Description
	3.3.2 FopCommand Interfaces
	3.3.3 FopCommand Object Model Description
	3.3.4 FopCommand Dynamic Model Description
	3.3.5 FopCommand Data Dictionary

	3.4 TransmitCommand Description
	3.4.1 TransmitCommand Context Description
	3.4.2 TransmitCommand Interfaces
	3.4.3 TransmitCommand Object Model Description
	3.4.4 TransmitCommand Dynamic Model Description
	3.4.5 TransmitCommand Data Dictionary

	List of Figures
	Figure 3.1-1. Command Subsystem Context Diagram
	Figure 3.2.1-1 FormatCommand Context Diagram
	Figure 3.2.3-1. FormatCommand Object Diagram
	Figure 3.2.3-2. FormatCommand Message Obect Diagram
	Figure 3.2.4.1-1. FormatCommand Initialization: Successful for Primary Process
	Figure 3.2.4.2-1. FormatCommand Initialization: Successful for Back Up Process

	Figure 3.2.4.3-1. FormatCommand Change Authorized User: Successful
	Figure 3.2.4.4-1. Real-Time Command Validation: Successful Event Trace
	Figure 3.2.4.5-1. Real Time Command Validation: No command definition
	Figure 3.2.4.6-1. Real Time Command Validation: Fail Submnemonic check
	Figure 3.2.4.7-1. Real Time Command Validation: No Prerequisite override
	Figure 3.2.4.8-1. Real Time Command Validation: Cancal critical
	Figure 3.2.4.9-1. Stored Command Validation: Verification required
	Figure 3.2.4.10-1. Stored Command Validation: No Verification required
	Figure 3.2.4.11-1. Write Configuration Snapshot request
	Figure 3.2.4.12-1. Read Configuration Snapshot request
	Figure 3.2.4.13-1. Load Command Validation: Successful Event Trace
	Figure 3.2.4.14-1. Load Command Validation: Unsuccessful due to missing load
	Figure 3.2.4.15-1. Load Command Validation: Unsuccessful due to Invalid Parameters
	Figure 3.2.4.16-1. Load Command Validation: Unsuccessful due to canceling out-of-ordered partition
	Figure 3.2.4.17-1. Load Command Validation: Unsuccessful due to no prerequisite override
	Figure 3.2.4.18-1. Load Command Validation: Unsuccessful due to canceling critical
	Figure 3.2.4.19-1. Load Command: Abort Load
	Figure 3.2.4.20-1. Real-Time Command Verification: Successful Event Trace
	Figure 3.2.4.21-1. Real-Time Command Verification: Fail due to time out
	Figure 3.2.4.22-1. Real-Time Load Verification: Successful Event Trace
	Figure 3.2.4.23-1. Real-Time Load Verification: Failure due to time out
	Figure 3.2.4.24-1. Real Time Dump
	Figure 3.2.4.25-1. Hex Command Validation: Success Event Trace
	Figure 3.2.4.26-1. Hex Command Validation: Failure Event Trace
	Figure 3.2.4.27-1. FcCdCmdController state diagram
	Figure 3.2.4.28-1. FcCdRtCmd state diagram
	Figure 3.2.4.29-1. FcCdLoadCmd state diagram
	Figure 3.3.1-1. FopCommand Context Diagram
	Figure 3.3.3-1. FopCommand Object Diagram
	Figure 3.3.3-2. FopCommand Request Message Object Diagram
	Figure 3.3.3-3. FopCommand TcFrame Object Diagram
	Figure 3.3.4.1-1. FopCommand Initialization: Successful
	Figure 3.3.4.2-1. FopCommand Initialization: Failure Scenario
	Figure 3.3.4.3-1. FopCommand Init. AD Service w/out CLCW: Successful
	Figure 3.3.4.4-1. FopCommand Init. AD Service w/out CLCW: Failure scenario
	Figure 3.3.4.5-1. FopCommand Init. AD Service with CLCW: Successful
	Figure 3.3.4.6-1. FopCommand Init. AD Service with CLCW: Failure scenario
	Figure 3.3.4.7-1. FopCommand Init. AD Service with set VR: Successful scenario
	Figure 3.3.4.8-1. FopCommand Init. AD Service with set VR: Failure scenario
	Figure 3.3.4.9-1. FopCommand Transmission scenario
	Figure 3.3.4.9-2. FopCommand: Building Transfer Frame
	Figure 3.3.4.10-1. FopCommand Retransmission scenario
	Figure 3.3.4.11-1. FcCmCcsdsFop state diagram
	Figure 3.4.1-1. TransmitCommand Context Diagram
	Figure 3.4.3-1. TransmitCommand Object Diagram
	Figure 3.4.3-2. RMS / TransmitCommand I/F Object Diagram
	Figure 3.4.3-3. FopCommand / TransmitCommand I/F Object Diagram
	Figure 3.4.4.1-1. Real Time Command Transmission
	Figure 3.4.4.2-1. Real Time Load Command Transmiss...
	Figure 3.4.4.3-1. FcCmTransmitController state dia...

